Skip to main content
Log in

Technologies of directed protein evolution in vivo

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Directed evolution of proteins for improved or modified functionality is an important branch of modern biotechnology. It has traditionally been performed using various in vitro methods, but more recently, methods of in vivo artificial evolution come into play. In this review, we discuss and compare prokaryotic and eukaryotic-based systems of directed protein evolution in vivo, highlighting their benefits and current limitations and focusing on the biotechnological potential of vertebrate immune cells for the generation of protein diversity by means of the immunoglobulin diversification machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AID:

Activation-induced deaminase

BFP:

Blue fluorescent protein

EGFP:

Enhanced GFP

FACS:

Fluorescence-activated cell sorting

GFP:

Green fluorescent protein

GPCR:

G protein-coupled receptor

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

mRFP:

Monomeric red fluorescent protein

PCR:

Polymerase chain reaction

TSA:

Trichostatin A

References

  1. Kaur J, Sharma R (2006) Directed evolution: an approach to engineer enzymes. Crit Rev Biotechnol 26(3):165–199. doi:10.1080/07388550600851423

    Article  PubMed  CAS  Google Scholar 

  2. Jackel C, Kast P, Hilvert D (2008) Protein design by directed evolution. Annu Rev Biophys 37:153–173. doi:10.1146/annurev.biophys.37.032807.125832

    Article  PubMed  CAS  Google Scholar 

  3. Bottcher D, Bornscheuer UT Protein engineering of microbial enzymes. Curr Opin Microbiol 13 (3):274–282. S1369-5274(10)00015-9 [pii]

  4. Dougherty MJ, Arnold FH (2009) Directed evolution: new parts and optimized function. Curr Opin Biotechnol 20(4):486–491. doi:10.1016/j.copbio.2009.08.005

    Article  PubMed  CAS  Google Scholar 

  5. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370(6488):389–391. doi:10.1038/370389a0

    Article  PubMed  CAS  Google Scholar 

  6. Ness JE, Welch M, Giver L, Bueno M, Cherry JR, Borchert TV, Stemmer WP, Minshull J (1999) DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol 17(9):893–896. doi:10.1038/12884

    Article  PubMed  CAS  Google Scholar 

  7. Harayama S (1998) Artificial evolution by DNA shuffling. Trends Biotechnol 16(2):76–82. S0167-7799(97)01158-X [pii]

    Article  PubMed  CAS  Google Scholar 

  8. Shen B (2002) PCR approaches to DNA mutagenesis and recombination. An overview. Methods Mol Biol 192:167–174. doi:10.1385/1-59259-177-9:167

    PubMed  CAS  Google Scholar 

  9. Matsuura T, Yomo T (2006) In vitro evolution of proteins. J Biosci Bioeng 101(6):449–456. doi:10.1263/jbb.101.449

    Article  PubMed  CAS  Google Scholar 

  10. Lipovsek D, Pluckthun A (2004) In vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290(1–2):51–67. doi:10.1016/j.jim.2004.04.008

    Article  PubMed  CAS  Google Scholar 

  11. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97(2):391–410

    Article  PubMed  CAS  Google Scholar 

  12. Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11(1):91–100

    Google Scholar 

  13. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91(22):10747–10751

    Article  PubMed  CAS  Google Scholar 

  14. Cirino PC, Mayer KM, Umeno D (2003) Generating mutant libraries using error-prone PCR. Methods Mol Biol 231:3–9. doi:10.1385/1-59259-395-X:3

    PubMed  CAS  Google Scholar 

  15. Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, Hermans E, Pluckthun A (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci USA 105(39):14808–14813. doi:10.1073/pnas.0803103105

    Article  PubMed  CAS  Google Scholar 

  16. Liu R, Barrick JE, Szostak JW, Roberts RW (2000) Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol 318:268–293

    Article  PubMed  CAS  Google Scholar 

  17. Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94(10):4937–4942

    Article  PubMed  CAS  Google Scholar 

  18. Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22(10):538–545. doi:10.1016/j.tibtech.2004.08.012

    Article  PubMed  CAS  Google Scholar 

  19. Greener A, Callahan M, Jerpseth B (1996) An efficient random mutagenesis technique using an E. coli mutator strain. Methods Mol Biol 57:375–385. doi:10.1385/0-89603-332-5:375

    PubMed  CAS  Google Scholar 

  20. Chusacultanachai S, Yuthavong Y (2004) Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. Methods Mol Biol 270:319–334. doi:10.1385/1-59259-793-9:319

    PubMed  CAS  Google Scholar 

  21. Bornscheuer UT, Altenbuchner J, Meyer HH (1998) Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. Biotechnol Bioeng 58(5):554–559. doi:10.1002/(SICI)1097-0290(19980605)58:5<554::AID-BIT12>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  22. Bornscheuer UT, Altenbuchner J, Meyer HH (1999) Directed evolution of an esterase: screening of enzyme libraries based on pH indicators and a growth assay. Bioorg Med Chem 7(10):2169–2173. S0968-0896(99)00147-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  23. Callanan MJ, Russell WM, Klaenhammer TR (2007) Modification of Lactobacillus beta-glucuronidase activity by random mutagenesis. Gene 389(2):122–127. doi:10.1016/j.gene.2006.10.022

    Article  PubMed  CAS  Google Scholar 

  24. Lu X, Hirata H, Yamaji Y, Ugaki M, Namba S (2001) Random mutagenesis in a plant viral genome using a DNA repair-deficient mutator Escherichia coli strain. J Virol Methods 94(1–2):37–43. S0166093401002701 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Nakashima N, Tamura T (2009) Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res 37(15):e103. doi:10.1093/nar/gkp498

    Article  PubMed  Google Scholar 

  26. Yang H, Miller JH (2008) Deletion of dnaN1 generates a mutator phenotype in Bacillus anthracis. DNA Repair (Amst) 7(3):507–514. doi:10.1016/j.dnarep.2007.10.003

    Article  CAS  Google Scholar 

  27. Camps M, Naukkarinen J, Johnson BP, Loeb LA (2003) Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci USA 100(17):9727–9732. doi:10.1073/pnas.1333928100

    Article  PubMed  CAS  Google Scholar 

  28. Itoh T, Tomizawa J (1979) Initiation of replication of plasmid ColE1 DNA by RNA polymerase, ribonuclease H, and DNA polymerase I. Cold Spring Harb Symp Quant Biol 43(Pt 1):409–417

    PubMed  CAS  Google Scholar 

  29. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. doi:10.1038/nature08187

    Article  PubMed  CAS  Google Scholar 

  30. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 98(12):6742–6746. doi:10.1073/pnas.121164898

    Article  PubMed  CAS  Google Scholar 

  31. Pirakitikulr N, Ostrov N, Peralta-Yahya P, Cornish VW PCR less library mutagenesis via oligonucleotide recombination in yeast. Protein Sci 19(12):2336–2346. doi:10.1002/pro.513

  32. Weigert MG, Cesari IM, Yonkovich SJ, Cohn M (1970) Variability in the lambda light chain sequences of mouse antibody. Nature 228(5276):1045–1047

    Article  PubMed  CAS  Google Scholar 

  33. Kim S, Davis M, Sinn E, Patten P, Hood L (1981) Antibody diversity: somatic hypermutation of rearranged VH genes. Cell 27(3 Pt 2):573–581. doi:0092-8674(81)90399-8

    Article  PubMed  CAS  Google Scholar 

  34. McKean D, Huppi K, Bell M, Staudt L, Gerhard W, Weigert M (1984) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci USA 81(10):3180–3184

    Article  PubMed  CAS  Google Scholar 

  35. Milstein C, Rada C (1995) The maturation of the antibody response. In: Honjo T, Alt F (eds) Immunoglobulin genes. Academic Press Limited, London, pp 57–83

    Chapter  Google Scholar 

  36. Papavasiliou FN, Schatz DG (2002) Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109(Suppl):S35–S44

    Article  PubMed  CAS  Google Scholar 

  37. Martin A, Scharff MD (2002) AID and mismatch repair in antibody diversification. Nat Rev Immunol 2(8):605–614. doi:10.1038/nri858

    PubMed  CAS  Google Scholar 

  38. Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK (2003) Immunity through DNA deamination. Trends Biochem Sci 28(6):305–312. S0968000403001117 [pii]

    Article  PubMed  CAS  Google Scholar 

  39. Rajewsky K, Forster I, Cumano A (1987) Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238(4830):1088–1094

    Article  PubMed  CAS  Google Scholar 

  40. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102(5):553–563. S0092-8674(00)00078-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  41. Bransteitter R, Pham P, Scharff MD, Goodman MF (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 100(7):4102–4107. doi:10.1073/pnas.0730835100

    Article  PubMed  CAS  Google Scholar 

  42. Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424(6944):103–107. doi:10.1038/nature01760

    Article  PubMed  CAS  Google Scholar 

  43. Peters A, Storb U (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4(1):57–65. doi:S1074-7613(00)80298-8

    Article  PubMed  CAS  Google Scholar 

  44. Cascalho M, Wong J, Steinberg C, Wabl M (1998) Mismatch repair co-opted by hypermutation. Science 279(5354):1207–1210

    Article  PubMed  CAS  Google Scholar 

  45. Di Noia J, Neuberger MS (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419(6902):43–48. doi:10.1038/nature00981

    Article  PubMed  CAS  Google Scholar 

  46. Petersen-Mahrt SK, Harris RS, Neuberger MS (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418(6893):99–103. doi:10.1038/nature00862

    Article  PubMed  CAS  Google Scholar 

  47. Yelamos J, Klix N, Goyenechea B, Lozano F, Chui YL, Gonzalez Fernandez A, Pannell R, Neuberger MS, Milstein C (1995) Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376(6537):225–229. doi:10.1038/376225a0

    Article  PubMed  CAS  Google Scholar 

  48. Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C (2001) Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol 166(8):5051–5057

    PubMed  CAS  Google Scholar 

  49. Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M, Nagaoka H, Honjo T (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296(5575):2033–2036. doi:10.1126/science.1071556

    Article  PubMed  CAS  Google Scholar 

  50. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12):7877–7882. doi:10.1073/pnas.082243699;99/12/7877

    Article  PubMed  CAS  Google Scholar 

  51. Sale JE, Neuberger MS (1998) TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9(6):859–869. S1074-7613(00)80651-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  52. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101(48):16745–16749. doi:10.1073/pnas.0407752101

    Article  PubMed  CAS  Google Scholar 

  53. Arakawa H, Hauschild J, Buerstedde JM (2002) Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295(5558):1301–1306. doi:10.1126/science.1067308

    Article  PubMed  CAS  Google Scholar 

  54. Arakawa H, Saribasak H, Buerstedde JM (2004) Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol 2(7):E179. doi:10.1371/journal.pbio.0020179

    Article  PubMed  Google Scholar 

  55. Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67(1):179–188. doi:0092-8674(91)90581-I

    Article  PubMed  CAS  Google Scholar 

  56. Seo H, Masuoka M, Murofushi H, Takeda S, Shibata T, Ohta K (2005) Rapid generation of specific antibodies by enhanced homologous recombination. Nat Biotechnol 23(6):731–735. doi:10.1038/nbt1092

    Article  PubMed  CAS  Google Scholar 

  57. Seo H, Hashimoto S, Tsuchiya K, Lin W, Shibata T, Ohta K (2006) An ex vivo method for rapid generation of monoclonal antibodies (ADLib system). Nat Protoc 1(3):1502–1506. doi:10.1038/nprot.2006.248

    Article  PubMed  CAS  Google Scholar 

  58. Seo H, Yamada T, Hashimoto S, Lin W, Ohta K (2007) Modulation of immunoglobulin gene conversion in chicken DT40 by enhancing histone acetylation, and its application to antibody engineering. Biotechnol Genet Eng Rev 24:179–193

    PubMed  CAS  Google Scholar 

  59. Kanayama N, Todo K, Takahashi S, Magari M, Ohmori H (2006) Genetic manipulation of an exogenous non-immunoglobulin protein by gene conversion machinery in a chicken B cell line. Nucleic Acids Res 34(2):e10. 34/2/e10 [pii]

    Article  PubMed  Google Scholar 

  60. Arakawa H, Kudo H, Batrak V, Caldwell RB, Rieger MA, Ellwart JW, Buerstedde JM (2008) Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Res 36(1):e1. doi:10.1093/nar/gkm616

    Article  PubMed  Google Scholar 

  61. Arakawa H, Lodygin D, Buerstedde JM (2001) Mutant loxP vectors for selectable marker recycle and conditional knock-outs. BMC Biotechnol 1:7

    Article  PubMed  CAS  Google Scholar 

  62. Betz AG, Milstein C, Gonzalez-Fernandez A, Pannell R, Larson T, Neuberger MS (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77(2):239–248. 0092-8674(94)90316-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  63. Odegard VH, Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6(8):573–583. doi:10.1038/nri1896

    Article  PubMed  CAS  Google Scholar 

  64. Kothapalli N, Norton DD, Fugmann SD (2008) Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol 180(4):2019–2023. 180/4/2019 [pii]

    PubMed  CAS  Google Scholar 

  65. Blagodatski A, Batrak V, Schmidl S, Schoetz U, Caldwell RB, Arakawa H, Buerstedde JM (2009) A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet 5(1):e1000332. doi:10.1371/journal.pgen.1000332

    Article  PubMed  Google Scholar 

  66. Arakawa H, Buerstedde JM (2009) Activation-induced cytidine deaminase-mediated hypermutation in the DT40 cell line. Philos Trans R Soc Lond B Biol Sci 364(1517):639–644. doi:10.1098/rstb.2008.0202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grant No. 02.740.11.5016 from the Russian Ministry of Science and by Deutsche Forschungsgemeinschaft (TR SFB-11) to V.L.K. A.B. is a recipient of the Russian state scholarship No. 8084 p/12612 “Participant of the Youth Contest for Science and Innovation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Katanaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagodatski, A., Katanaev, V.L. Technologies of directed protein evolution in vivo. Cell. Mol. Life Sci. 68, 1207–1214 (2011). https://doi.org/10.1007/s00018-010-0610-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0610-5

Keywords

Navigation