Skip to main content

Advertisement

Log in

Cell Culture Processes for the Production of Viral Vectors for Gene Therapy Purposes

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Gene therapy is a promising technology for the treatment of several acquired and inherited diseases. However, for gene therapy to be a commercial and clinical success, scalable cell culture processes must be in place to produce the required amount of viral vectors to meet market demand. Each type of vector has its own distinct characteristics and consequently its own challenges for production. This article reviews the current technology that has been developed for the efficient, large-scale manufacture of retrovirus, lentivirus, adenovirus, adeno-associated virus and herpes simplex virus vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Rubeai M., Emery A.N., Chalder S. and Jan D.C. (1992). Specific monoclonal antibody productivity and the cell cycle-comparisons of batchcontinuous and perfusion cultures. Cytotechnology 9: 85–97

    Article  CAS  Google Scholar 

  • Al-Rubeai M., Rookes S. and Emery A. N. (1990). Studies of cell proliferation and monoclonal antibody synthesis and secretion in alginate-entrapped hybridoma cells. In: de Bont, J.A.M., Visser, J., Mattiasson, B., and Tramper, J. (eds) Physiology of Immobilized cells. 10-12-1989, pp 181–188. Elsevier Science Publishers Cells, AmsterdamThe Netherlands

    Google Scholar 

  • Beer C., Buhr P., Hahn H., Laubner D. and Wirth M. (2003a). Gene expression analysis of murine cells producing amphotropic mouse leukaemia virus at a cultivation temperature of 32 and 37 °C. J. Gen. Virol. 84: 1677–1686

    Article  CAS  Google Scholar 

  • Beer C., Meyer A., Muller K. and Wirth M. (2003b). The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 308: 137–146

    Article  CAS  Google Scholar 

  • Benihoud K., Yeh P. and Perricaudet M. (1999). Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10: 440–447

    Article  CAS  Google Scholar 

  • Blouin V., Brument N., Toublanc E., Raimbaud I., Moullier P. and Salvetti A. ((2004)). Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med. 6(1): s223–s228

    Article  CAS  Google Scholar 

  • Braas G., Searle P.F., Slater N.K.H. and Lydiatt A. (1996). Stratagies for the isolation and purification of retroviral vectors for human gene therapy. Bioseparation 6: 211–228

    CAS  Google Scholar 

  • Breyer B., Jiang W., Cheng H., Zhou L., Paul R., Feng T. and He T.C. (2001). Adenoviral vector-mediated gene transfer for human gene therapy. Curr. Gene Ther. 1: 149–162

    Article  CAS  Google Scholar 

  • Brooks A.I., Stein C.S., Hughes S.M., Heth J., Mccray P.M., Sauter S.L., Johnston J.C., Cory-Slechta D.A., Federoff H.J. and Davidson B.L. (2002). Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. USA 99: 6216–6221

    Article  CAS  Google Scholar 

  • Carroll R., Lin J.T., Dacquel E.J., Mosca J.D., Burke D.S. and St Louis D.C. (1994). A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 68: 6047–6051

    CAS  Google Scholar 

  • Chuah M.K., Collen D. and Vanden Driessche T. (2003). Biosafety of adenoviral vectors. Curr. Gene Ther. 3: 527–543

    Article  CAS  Google Scholar 

  • Clark K.R. (2002). Recent Advances in Recombinant Adeno-Associated Virus Vector Production. Kidney Int. 61: 9–15

    Article  Google Scholar 

  • Coleman J.E., Huentelman M.J., Kasparov S., Metcalfe B.L., Paton J.F., Katovich M.J., Semple-Rowland S.L. and Raizada M.K. (2003). Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol. Genom. 12: 221–228

    CAS  Google Scholar 

  • Collaco R.F., Cao X. and Trempe J.P. (1999). A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238: 397–405

    Article  CAS  Google Scholar 

  • Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H. and Carrondo M.J.T. 2005. The use of recombinase Cassette Exchange in retroviral Vector Producer Cell Lines: predictability and efficiency in transgene replacement. J. Biotechnol.Submitted.

  • Cortin V., Thibault J., Jacob D. and Garnier A. (2004). High-titer adenovirus vector production in 293S cell perfusion culture. Biotechnol. Prog. 20: 858–863

    Article  CAS  Google Scholar 

  • Côté J., Garnier A., Massie B. and Kamen A. (1998). Serum-free Production of Recombinant Proteins and Adenoviral Vectors by 293SF-3F6 Cells. Biotechnol. Bioeng. 59: 567–575

    Article  Google Scholar 

  • Cruz P.E., Almeida J.S., Murphy P.N., Moreira J.L. and Carrondo M.J. (2000). Modeling retrovirus production for gene therapy. 1. Determination of optimal bioreaction mode and harvest strategy. Biotechnol. Prog. 16: 213–221

    Article  CAS  Google Scholar 

  • Cruz P.E., Carmo M., Coroadinha A.S., Bengala A., Goncalves D., Teixeira M., Merten O.-W., Gény-Fiamma C. and Carrondo M.J.T. (2005). Retroviral vector stability: inactivation kinetics and membrane properties. In: Godia, F. and Fussenegger, M. (eds) Animal Cell Technology meets Genomics, pp 303–308. Springer, Dordrecht/NL

    Chapter  Google Scholar 

  • Curran M.A., Kaiser S.M., Achacoso P.L. and Nolan G.P. (2000). Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol. Ther. 1: 31–38

    Article  CAS  Google Scholar 

  • Davis J.L., Witt R.M., Gross P.R., Hokanson C.A., Jungles S., Cohen L.K., Danos O. and Spratt S.K. (1997). Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum. Gene Ther. 8: 1459–1467

    Article  CAS  Google Scholar 

  • Fallaux F.J., Kranenburg O., Cramer S.J., Houweling A., Van Ormondt H., Hoeben R.C. and Van Der Eb A.J. (1996). Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum. Gene Ther. 7(2): 215–222

    Article  CAS  Google Scholar 

  • Fallaux F.J., Bout A., Van Der Velde I., Van Den Wollenberg D.J., Hehir K.M., Keegan J., Auger C., Cramer S.J., Van Ormondt H., Van Der Eb A.J., Valerio D. and Hoeben R.C. (1998). New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 9(13): 1909–1917

    Article  CAS  Google Scholar 

  • Farson D., Harding T.C., Tao L., Liu J., Powell S., Vimal V., Yendluri S., Koprivnikar K., Ho K., Twitty C., Husak P., Lin A., Snyder R.O. and Donahue B.A. (2004). Development and characterization of a cell line for large-scaleserum-free production of recombinant adeno-associated viral vectors. J. Gene Med. 6(12): 1369–1381

    Article  CAS  Google Scholar 

  • Fassnacht D., Rössing S., Singh R.P., Al Rubeai M. and Pörtner R. (1999). Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology 30: 95–105

    Article  CAS  Google Scholar 

  • Forestell S.P., Bohnlein E. and Rigg R.J. (1995). Retroviral end-point titer is not predictive of gene transfer efficiency: implications for vector production. Gene Ther. 2: 723–730

    CAS  Google Scholar 

  • Forestell S.P., Dando J.S., Chen J., de Vries P., Bohnlein E. and Rigg R.J. (1997). Novel retroviral packaging cell lines: complementary tropisms and improved vector production for efficient gene transfer. Gene Ther. 4: 600–610

    Article  CAS  Google Scholar 

  • Friedmann T. 1997. Overcoming the obstacles to gene therapy. Scientific American, 80–85.

  • Gao G.P., Yang Y. and Wilson J.M. (1996). Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J. Virol. 70: 8934–8943

    CAS  Google Scholar 

  • Gao G.P., Lu F., Sanmiguel J.C., Tran P.T., Abbas Z., Lynd K.S., Marsh J., Spinner N.B. and Wilson J.M. (2002). Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol. Ther. 5: 644–649

    Article  CAS  Google Scholar 

  • Gao X. and Huang L. (1995). Cationic liposome-mediated gene transfer. Gene Ther. 2: 710–722

    CAS  Google Scholar 

  • Garnier A., Cortin V., Thibault J. and Jacob D. (2002). Production of Recombinant Adenovirus by 293 Cells Cultures in Perfusion. Cell Culture Engineering VIII, Snowmass

    Google Scholar 

  • Garnier A., Cote J., Nadeau I., Kamen A. and Massie B. (1994). Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells. Cytotechnology 15: 145–155

    Article  CAS  Google Scholar 

  • Gény-Fiamma C., Millot L., Rocca C., Danos O. and Merten O.W. (2004). Optimization of the production of retroviraol vectors: influences of the sugar source. In: Yagasaki, K., Miura, Y., Hatori, M., and Nomura, Y. (eds) Animal Cell Technology: Basic & Applied Aspects, pp 89–97. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Geraerts M., Michiels M., Baekelandt V., Debyser Z. and Gijsbers R. 2005. Upscaling of lentiviral vector production by tangential flow filtration. J. Gene Med. Published online May 20, 2005. http://dx.doi.org/10.1002/jgm.778.

  • Gerin P.A., Gilligan M.G., Searle P.F. and Al-Rubeai M. (1999a). Improved titers of retroviral vectors from the human FLYRD18 packaging cell line in serum- and protein-free medium. Hum. Gene Ther. 10: 1965–1974

    Article  CAS  Google Scholar 

  • Gerin P.A., Searle P.F. and Al-Rubeai M. (1999b). Production of retroviral vectors for gene therapy with the human packaging cell line FLYRD18. Biotechnol. Prog. 15: 941–948

    Article  CAS  Google Scholar 

  • Ghivizzani S.C., Lechman E.R., Tio C., Mule K.M., Chada S., McCormack J.E., Evans C.H. and Robbins P.D. (1997). Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy. Gene Ther. 4: 977–982

    Article  CAS  Google Scholar 

  • Graham F.L., Smiley J., Russell W.C. and Nairn R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–74

    Article  CAS  Google Scholar 

  • Griffiths J.B. (1988). Overview of cell culture systems and their Scale-up. In: Spier, R.E. and Griffiths, J.B. (eds) Animal Cell Biotechnology, vol. 3, pp 179–220. Academic Press Limited, London

    Google Scholar 

  • Grimm D., Kern A., Rittner K. and Kleinschmidt J.A. (1998). Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9: 2745–2760

    Article  CAS  Google Scholar 

  • Grimm D. (1999). Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther. 6: 1322–1330

    Article  CAS  Google Scholar 

  • Haselhorst D., Kaye J.F. and Lever A.M. (1998). Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer. J. Gen. Virol. 79(Pt 2): 231–237

    CAS  Google Scholar 

  • He T.C., Zhou S., da Costa L.T., Yu J., Kinzler K.W. and Vogelstein B. (1998). A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95: 2509–2514

    Article  CAS  Google Scholar 

  • Kost T.A., Klein J.L. and Condreay J.P. 2000. Application of recombinant baculoviruses in biopharmaceutical research. In: Al-Rubeai M. (ed.), Cell Engineering, Vol. 2: Transient Expression. Kluwer Academic Publications, pp.1–28.

  • Ikeda Y., Takeuchi Y., Martin F., Cosset F.L., Mitrophanous K. and Collins M. (2003). Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 21: 569–572

    Article  CAS  Google Scholar 

  • Imler J.L., Chartier C., Dreyer D., Dieterle A., Sainte-Marie M., Faure T., Pavirani A. and Mehtali M. (1996). Novel complementation cell lines derived from human lung carcinoma A549 cells support the growth of E1-deleted adenovirus vectors. Gene Ther. 3: 75–84

    CAS  Google Scholar 

  • Imren S., Payen E., Westerman K.A., Pawliuk R., Fabry M.E., Eaves C.J., Cavilla B., Wadsworth L.D., Beuzard Y., Bouhassira E.E., Russell R., London I.M., Nagel R.L., Leboulch P. and Humphries R.K. (2002). Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl. Acad Sci USA 99: 14380–14385

    Article  CAS  Google Scholar 

  • Iyer P., Ostrove J.M. and Vacante D. (1999). Comparison of manufacturing techniques for adenovirus production. Cytotechnology 30: 169–172

    Article  CAS  Google Scholar 

  • Jardon M. and Garnier A. (2003). pH, pCO2temperature effect on r-adenovirus production. Biotechnol. Prog. 19: 202–208

    Article  CAS  Google Scholar 

  • Jenny C., Toublanc E., Danos O. and Merten O.-W. 2005. Evaluation of a serum-free medium for the production of rAAV-2 using HeLa derived producer cells. Cytotechnology.In press.

  • Johnson P.A., Yoshida K., Gage F.H. and Friedmann T. (1992). Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Brain Res Mol. Brain Res. 12: 95–102

    Article  CAS  Google Scholar 

  • Johnston J.C., Gasmi M., Lim L.E., Elder J.H., Yee J.K., Jolly D.J., Campbell K.P., Davidson B.L. and Sauter S.L. (1999). Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73: 4991–5000

    CAS  Google Scholar 

  • Kafri T., van Praag H., Ouyang L., Gage F.H. and Verma I.M. (1999). A packaging cell line for lentivirus vectors. J. Virol. 73: 576–584

    CAS  Google Scholar 

  • Kamen A. and Henry O. (2004). Development and optimization of an adenovirus production process. J. Gene Med. 6: S184–S192

    Article  CAS  Google Scholar 

  • Kang S.-H., Lee G.M. and Kim B.-G. (2000). Justification of continuous packed-bed reactor for retroviral vector production from amphotopic ψ CRIP murine producer cell. Cytotechnology 34: 151–158

    Article  CAS  Google Scholar 

  • Kaptein L.C., Greijer A.E., Valerio D. and van Beusechem V.W. (1997). Optimized conditions for the production of recombinant amphotropic retroviral vector preparations. Gene Ther. 4: 172–176

    Article  CAS  Google Scholar 

  • Karavodin L.M., Robbins J., Chong K., Hsu D., Ibanez C., Mento S., Jolly D. and Fong T.C. (1998). Generation of a systemic antitumor response with regional intratumoral injections of interferon gamma retroviral vector. Hum. Gene Ther. 9: 2231–2241

    Article  CAS  Google Scholar 

  • Kioukia N., Nienow A.W., Al-Rubeai M. and Emery A.N. (1996). Influence of agitation and sparging on the growth rate and infection of insect cells in bioreactors and comparison with hybridoma culture. Biotechnol. Prog. 12: 779–785

    Article  CAS  Google Scholar 

  • Kim S.H., Kim S. and Robbins P.D. (2000). Retroviral vectors. Adv. Virus Res. 55: 545–563

    Article  CAS  Google Scholar 

  • Kotani H., Zhang S., Chiang Y.L., Otto E., Weaver L., Blaese R.M., Anderson W.F., McGarrity G.J. and Newton P.B. (1994). Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5: 19–28

    Article  CAS  Google Scholar 

  • Krisky D.M., Wolfe D., Goins W.F., Marconi P.C., Ramakrishnan R., Mata M., Rouse R.J., Fink D.J. and Glorioso J.C. (1998). Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 5: 1593–1603

    Article  CAS  Google Scholar 

  • Lai C.M., Lai Y.K.Y. and Rakoczy P.E. (2002). Adenovirus and adeno-associated virus vectors. DNA Cell Biol. 21: 895–913

    Article  CAS  Google Scholar 

  • Le Doux J.M., Davis H.E., Morgan J.R. and Yarmush M.L. (1999). Kinetics of retrovirus production and decay. Biotechnol. Bioeng. 63: 654–662

    Article  CAS  Google Scholar 

  • Lee S.G., Kim S., Robbins P.D. and Kim B.G. (1996). Optimization of environmental factors for the production and handling of recombinant retrovirus. Appl. Microbiol. Biotechnol. 45: 477–483

    Article  CAS  Google Scholar 

  • Lee Y.Y., Yap M.G., Hu W.S. and Wong K.T. (2003). Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol. Prog. 19: 501–509

    Article  CAS  Google Scholar 

  • Lever A.M.L., Strappe P.M. and Zhao J. (2004). Lentiviral Vectors. J. Biomed. Sci. 11: 439–449

    Article  CAS  Google Scholar 

  • Lochmuller H., Jani A., Huard J., Prescott S., Simoneau M., Massie B., Karpati G. and Acsadi G. (1994). Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum. Gene Ther. 5: 1485–1491

    Article  CAS  Google Scholar 

  • Loewen N., Leske D.A., Chen Y., Teo W.L., Saenz D.T., Peretz M., Holmes J.M. and Poeschla E.M. (2003). Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. J. Gene Med. 5: 1009–1017

    Article  CAS  Google Scholar 

  • Looby D. and Griffiths B. (1990). Immobilisation of animal cells in porous carrier culture. Trends Biotechnol. 8: 204–209

    Article  CAS  Google Scholar 

  • Lyddiat A. and O’Sullivan D.A. (1998). Biochemical recovery and purification of gene therapy vectors. Curr. Opin. Biotechnol. 9: 177–185

    Article  Google Scholar 

  • Mannix C. and Jarman R.F. 2000. A guide to successful scale-up of the baculovirus expression system. In: Al-Rubeai M.(eds) Cell Engineering, Vol. 2: Transient Expression. Kluwer Academic Publications, pp. 43–55.

  • Matsushita T., Elliger S., Elliger C., Podsakoff G., Villarreal L., Kurtzman G.J., Iwaki Y. and Colosi P. (1998). Adeno- associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5: 938–945

    Article  CAS  Google Scholar 

  • McTaggart S. 2000. Retroviral Vector Production for Gene Therapy Applications. Ph. D. Thesis, University of Birmingham.

  • McTaggart S. and Al-Rubeai M. (2000). Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol. Prog. 16: 859–865

    Article  CAS  Google Scholar 

  • McTaggart S. and Al-Rubeai M. (2001). Relationship between cell proliferation, cell-cycle phaseand retroviral vector production in FLYRD18 human packaging cells. Biotechnol. Bioeng. 76: 52–60

    Article  CAS  Google Scholar 

  • McTaggart S. and Al-Rubeai M. (2002). Retroviral vectors for human gene delivery. Biotechnol. Adv. 20: 1–31

    Article  CAS  Google Scholar 

  • Meghrous J., Aucoin M.G., Jacob D., Chahal P.S., Arcand N. and Kamen A.A. (2005). Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol. Prog. 21: 154–160

    Article  CAS  Google Scholar 

  • Mellerick D.M. and Fraser N. (1987). Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158: 265–275

    Article  CAS  Google Scholar 

  • Merten O.-W. (2004). State-of-the-art of the production of retroviral vectors. J. Gene Med. 6: S105–S124

    Article  CAS  Google Scholar 

  • Merten O.-W., Cornet V., Petres S., Couvé E. and Heard J.M. (1996). Large scale production of retrovirus vectors (abstract). Cytotechnology 21: 8

    Google Scholar 

  • Merten O.-W., Cruz P.E., Rochette C., Gény-Fiamma C., Bouquet C., Goncalves D., Danos O. and Carrondo M.J.T. (2001a). Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol. Prog. 17: 326–335

    Article  CAS  Google Scholar 

  • Merten O.-W., Gény-Fiamma C. and Douar A.M. (2005). Current issues in adeno-associated viral vectors production. Gene Ther. 12: S51–S61

    Article  CAS  Google Scholar 

  • Merten O.-W., Landric L. and Danos O. (2001b). Influence of the metabolic status of packaging cells on retroviral vector production. In: Merten, O.-W., Mattanovich, D., Lang, C., Larsson, G., Neubauer, P., Porro, D., Postma, P., Teixeira de Mattos, J., and Cole, J.A. (eds) Recombinant Protein Production with Prokaryotic and Eukayotic Cells A Comparative View on Host Physiology, pp 303–318. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Michael S.I. and Curiel D.T. (1994). Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway. Gene Ther. 1: 223–232

    CAS  Google Scholar 

  • Mitrophanous K., Yoon S., Rohll J., Patil D., Wilkes F., Kim V., Kingsman S., Kingsman A. and Mazarakis N. (1999). Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6: 1808–1818

    Article  CAS  Google Scholar 

  • Nadeau I., Garnier A., Cote J., Massie B., Chavarie C. and Kamen A. (1996). Improvement of recombinant protein production with the human adenovirus/293S expression system using fed-batch strategies. Biotechnol. Bioeng. 51: 613–623

    Article  CAS  Google Scholar 

  • Nadeau I., Gilbert P.A., Jacob D., Perrier M. and Kamen A. (2002a). Low-protein medium affects the 293SF central metabolism during growth and infection with adenovirus. Biotechnol. Bioeng. 77: 91–104

    Article  CAS  Google Scholar 

  • Nadeau I., Jacob D., Perrier M. and Kamen A. (2000). 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol. Prog. 16: 872–884

    Article  CAS  Google Scholar 

  • Nadeau I. and Kamen A. (2003). Production of adenovirus vector for gene therapy. Biotechnol. Adv. 20: 475–489

    Article  CAS  Google Scholar 

  • Nadeau I., Seanez G. and Wu F. 2001. Adenovirus production in 293 cells: a comparative study between a suspension cell and an adherent cell process. The 17th ESACT Meeting, Tylosand, Sweden, June 10–14.

  • Nadeau I., Seanez G. and Wu F. 2002b. Optimization of a 293 suspension process for adenovirus production. Cell Culture Engineering VIII, Snowmass, Colorado, April 1–6.

  • Navarro J., Oudrhiri N., Fabrega S. and Lehn P. (1998). Gene delivery systems: bridging the gap between recombinant viruses and artificial vectors. Adv. Drug Deliv. Rev. 30: 5–11

    Article  Google Scholar 

  • Nemunaitis J., Fong T., Burrows F., Bruce J., Peters G., Ognoskie N., Meyer W., Wynne D., Kerr R., Pippen J., Oldham F. and Ando D. (1999). Phase I trial of interferon gamma retroviral vector administered intratumorally with multiple courses in patients with metastatic melanoma. Hum. Gene Ther. 10: 1289–1298

    Article  CAS  Google Scholar 

  • Ni Y., Sun S., Oparaocha I., Humeau L., Davis B., Cohen R., Binder G., Chang Y.N., Slepushkin V. and Dropulic B. (2005). Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J. Gene Med. 7(6): 818–834

    Article  CAS  Google Scholar 

  • Olsen J.C. (1998). Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 5: 1481–1487

    Article  CAS  Google Scholar 

  • Olsen J.C. and Sechelski J. (1995). Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther. 6: 1195–1202

    Article  CAS  Google Scholar 

  • Ozuer A., Wechuck J.B., Goins W.F., Wolfe D., Glorioso J.C. and Ataai M.M. (2002). Effect of genetic background and culture conditions on the production of herpesvirus-based gene therapy vectors. Biotechnol. Bioeng. 77: 685–692

    Article  CAS  Google Scholar 

  • Pages J.C., Loux N., Farge D., Briand P. and Weber A. (1995). Activation of Moloney murine leukemia virus LTR enhances the titer of recombinant retrovirus in psi CRIP packaging cells. Gene Ther. 2: 547–551

    CAS  Google Scholar 

  • Palu G., Bonaguro R. and Marcello A. (1999). In pursuit of new developments for gene therapy of human diseases. J. Biotechnol. 68: 1–13

    Article  CAS  Google Scholar 

  • Pan D. and Whitley C.B. (1999). Closed hollow-fiber bioreactor: a new approach to retroviral vector production. J. Gene Med. 1: 433–440

    Article  CAS  Google Scholar 

  • Parasrampuria D.A. and Hunt C.A. 1998. Therapeutic delivery issues in gene therapy, Part 1: Vectors. BioPharm, 38–45.

  • Parks R.J., Chen L., Anton M., Sankar U., Rudnicki M.A. and Graham F.L. (1996). A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93: 13565–13570

    Article  CAS  Google Scholar 

  • Pear W.S., Nolan G.P., Scott M.L. and Baltimore D. (1993). Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90: 8392–8396

    Article  CAS  Google Scholar 

  • Pensiero M.N., Wysocki C.A., Nader K. and Kikuchi G.H. (1996). Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum. Gene Ther. 7: 1095–1101

    Article  CAS  Google Scholar 

  • Peshwa M.V., Kyung Y.-S., McClure D.B. and Hu W.-S. (1993). Cultivation of mammalian cells as aggregates in bioreactors: effect of calcium concentration on spatial distribution of viability. Biotechnol. Bioeng. 41: 179–187

    Article  CAS  Google Scholar 

  • Pizzato M., Merten O.W., Blair E.D. and Takeuchi Y. (2001). Development of a suspension packaging cell line for production of high titreserum-resistant murine leukemia virus vectors. Gene Ther. 8: 737–745

    Article  CAS  Google Scholar 

  • Rigg R.J., Chen J., Dando J.S., Forestell S.P., Plavec I. and Bohnlein E. (1996). A novel human amphotropic packaging cell line: high titercomplement resistanceand improved safety. Virology 218: 290–295

    Article  CAS  Google Scholar 

  • Robbins P.D., Hideaki T. and Ghivizzani S.C. (1998). Viral vectors for gene therapy. Trends Biotechnol. 16: 35–40

    Article  CAS  Google Scholar 

  • Sadaie M.R., Zamani M., Whang S., Sistron N. and Arya S.K. (1998). Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy: dual gene expression in the context of HIV-2 LTR and Tat. J. Med. Virol 54: 118–128

    Article  CAS  Google Scholar 

  • Sallberg M., Hughes J., Javadian A., Ronlov G., Hultgren C., Townsend K., Anderson C.G., O’Dea J., Alfonso J., Eason R., Murthy K.K., Jolly D.J., Chang S.M., Mento S.J., Milich D. and Lee W.T. (1998). Genetic immunization of chimpanzees chronically infected with the hepatitis B virus using a recombinant retroviral vector encoding the hepatitis B virus core antigen. Hum. Gene Ther. 9: 1719–1729

    Article  CAS  Google Scholar 

  • Salvetti A., Oreve S., Chadeuf G., Favre D., Cherel Y., Champion-Arnaud P., David-Ameline J. and Moullier P. (1998). Factors influencing recombinant adeno-associated virus production. Hum. Gene Ther. 9: 695–706

    Article  CAS  Google Scholar 

  • Schiedner G., Hertel S. and Kochanek S. (2000). Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum. Gene Ther. 11: 2105–2116

    Article  CAS  Google Scholar 

  • Schnell T., Foley P., Wirth M., Munch J. and Uberla K. (2000). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum. Gene Ther. 11: 439–447

    Article  CAS  Google Scholar 

  • Schonely K., Afable C., Slepushkin V., Lu X., Andre K., Boehmer J., Bengtson K., Doud M., Cohen R., Berlinger D., Slepushkina T., Chen Z., Li Y., Binder D., Davis B., Humeau L. and Dropulic B. (2003). QC release testing of an HIV-1 based lentiviral vector lot and transduced cellular product. Bioproc. J. 2: 29–47

    Google Scholar 

  • Schucht R., Coroadinha A.S., Zanta-Boussif M.A., Carrondo M., Hauser H. and Wirth D. 2005. A new generation of retroviral producer cells: predictable and stable virus production by Flp mediated site-specific integration of retroviral vectors. Mol. Thera. Submitted.

  • Sena-Esteves M., Tebbets J.C., Steffens S., Crombleholme T. and Flake A.W. (2004). Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122: 131–139

    Article  CAS  Google Scholar 

  • Shen B.Q., Clarke M.F. and Palsson D.O. (1996). Kinetics of retroviral production from the amphotrophic ψCRIP murine producer cell line. Cytotechnology 22: 185–195

    Article  Google Scholar 

  • Shenk T. (1996). Adenoviridae: the viruses and their replication. In: Fields, B.N., Knipe, D.M., Howley, P.M., Chanock, R.M., Melnick, J.L., Monath, T.P., Roizman, B. and Straus, S.E. (eds) Fields Virology, pp 2111–2148. Philadelphia, Lippincott

    Google Scholar 

  • Sheridan P. L., Bodner M., Lynn A., Phuong T.K., DePolo N.J., O’Dea J., Nguyen K., McCormack J.E., Driver D.A., Townsend K., Ibanez C.E., Sajjadi N.C., Greengard J.S., Moore M.D., Respess J., Chang S.M., Jolly D.J., Sauter S.L., la Vega D.J. and Dubensky T.W. (2000). Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol. Ther. 2: 262–275

    Article  CAS  Google Scholar 

  • Starling E.H. (1896). On the absorption of fluids from the convective tissue space. J. Physiol. 19: 312–326

    CAS  Google Scholar 

  • Stitz J., Muhlebach M.D., Blomer U., Scherr M., Selbert M., Wehner P., Steidl S., Schmitt I., Konig R., Schweizer M. and Cichutek K. (2001). A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology 291: 191–197

    Article  CAS  Google Scholar 

  • Takahashi K., Luo T.C., Saishin Y., Saishin Y., Sung J., Hackett S., Brazzell R.K., Kaleko M. and Campochiaro P.A. (2002). Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum. Gene Ther. 13: 1305–1316

    Article  CAS  Google Scholar 

  • Theodossiou I., Thomas O.R.T. and Dunnill R. (1999). Methods for enhancing the recovery of plasmid genes from neutralised cell lysate. Bioproc. Eng. 20: 147–156

    Article  CAS  Google Scholar 

  • Torrent C., Bordet T. and Darlix J.L. (1994). Analytical study of rat retrotransposon VL30 RNA dimerization in vitro and packaging in murine leukemia virus. J. Biol. Med. 240: 434–444

    CAS  Google Scholar 

  • Urabe M., Ding C. and Kotin R.M. (2002). Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13: 1925–1943

    Article  Google Scholar 

  • Van Den Driessche T., Vanslembrouck V., Goovaerts I., Zwinnen H., Vanderhaeghen M.L., Collen D. and Chuah M.K. (1999). Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc. Natl. Acad. Sci. USA 96: 10379–10384

    Article  CAS  Google Scholar 

  • Vos J.-M. H. 1995. Viruses in Human Gene Therapy. Chapman and Hall.

  • Wang G., Davidson B.L., Melchert P., Slepushkin V.A., van Es H.H., Bodner M., Jolly D.J. and McCray P.B. (1998). Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J. Virol. 72: 9818–9826

    CAS  Google Scholar 

  • Warnock J.N. and Al-Rubeai M. 2004. Influence of serum concentration on cell growth and retrovirus production and decay kinetics. In: Yagasaki K., Miura Y., Hatori M. and Nomura Y. (eds), Animal Cell Technology: Basic & Applied Aspects. Kluwer Academic Publishers.

  • Warnock J. N. and Al-Rubeai M. (2005). Production of Biologics from Animal Cell Cultures. In: Nedovic, V. and Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology, pp. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Warnock J.N., Price T., Slade A. and Al-Rubeai M. (2004). Use of a Fluidised Bed Bioreactor for the Production of Retroviral Vectors for Gene Therapy Applications. Bioproc. J. 3: 41–45

    Google Scholar 

  • Wechuck J.B., Ozuer A., Goins W.F., Wolfe D., Oligino T., Glorioso J.C. and Ataai M.M. (2002). Effect of temperature medium composition and cell passage on production of herpes-based viral vectors. Biotechnol. Bioeng. 79: 112–119

    Article  CAS  Google Scholar 

  • Wikström K., Blomberg P. and Islam K.B. (2004). Clinical grade vector production: analysis of yieldstability, and storage of gmp-produced retroviral vectors for gene therapy. Biotechnol. Prog. 20: 1198–1203

    Article  CAS  Google Scholar 

  • Wu N. and Ataai M.M. (2000). Production of viral vectors for gene therapy applications. Curr. Opin. Biotechnol. 11: 205–208

    Article  CAS  Google Scholar 

  • Wu N., Watkins S.C., Schaffer P.A. and DeLuca N.A. (1996). Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70: 6358–6369

    CAS  Google Scholar 

  • Wu S.C., Huang G.Y. and Liu J.H. (2002). Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol. Prog. 18: 617–622

    Article  CAS  Google Scholar 

  • Xiao X., Li J. and Samulski R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72: 2224–2232

    CAS  Google Scholar 

  • Xie L., Metallo C., Warren J., Pilbrough W., Peltier J., Zhong T., Pikus L., Yancy A., Leung J., Aunins J.G. and Zhou W. (2003). Large-scale propagation of a replication-defective adenovirus vector in stirred-tank bioreactor PER.C6 cell culture under sparging conditions. Biotechnol. Bioeng. 83: 45–52

    Article  CAS  Google Scholar 

  • Xie L., Pilbrough W., Metallo C., Zhong T., Pikus L., Leung J., Aunins J.G. and Zhou W. (2002). Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions. Biotechnol. Bioeng. 80: 569–579

    Article  CAS  Google Scholar 

  • Yamaji H. and Fukuda H. (1992). Growth and death behavior of anchorage-independent animal-cells immobilized within porous support matrices. App. Micro. Biotechnol. 37: 244–251

    CAS  Google Scholar 

  • Yuk I.H.Y., Olsen M.M., Geyer S. and Forestell S.P. (2004). Perfusion cultures of human tumor cells: A scalable production platform for oncolytic adenoviral vectors. Biotechnol. Bioeng. 86: 637–642

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Rubeai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnock, J.N., Merten, OW. & Al-Rubeai, M. Cell Culture Processes for the Production of Viral Vectors for Gene Therapy Purposes. Cytotechnology 50, 141–162 (2006). https://doi.org/10.1007/s10616-005-5507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-005-5507-z

Key words

Navigation