Skip to main content
Log in

Hosting the plant cells in vitro: recent trends in bioreactors

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnological production of high-value metabolites and therapeutic proteins by plant in vitro systems has been considered as an attractive alternative of classical technologies. Numerous proof-of-concept studies have illustrated the feasibility of scaling up plant in vitro system-based processes while keeping their biosynthetic potential. Moreover, several commercial processes have been established so far. Though the progress on the field is still limited, in the recent years several bioreactor configurations has been developed (e.g., so-called single-use bioreactors) and successfully adapted for growing plant cells in vitro. This review highlights recent progress and limitations in the bioreactors for plant cells and outlines future perspectives for wider industrialization of plant in vitro systems as “green cell factories” for sustainable production of value-added molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267

    Article  CAS  Google Scholar 

  • Bassuner R (2010) Operating 100 L moss bioreactors secreting mAbs with defined mammalian-like glycosylation. Presentation to EAPB Meeting, 2/24/10, Vienna, Austria

  • Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccta. Biotechnol Bioeng 89:647–655

    Article  CAS  Google Scholar 

  • Bonfill M, Bentebibel S, Moyano E, Palazon J, Cusido RM, Eibl R, Pinol MT (2007) Paclitaxel and baccatin III production induced by methyljasmonate in free and immobilized cells of Taxus baccata. Biol Plant 51:647–652

    Article  CAS  Google Scholar 

  • Brod H, Vester A, Kauling J (2012) Opportunities and limitations of disposable technologies in biopharmaceutical processes. Chem Ingen Tech 84:633–645

    Article  CAS  Google Scholar 

  • Brändli J, Müller M, Imseng N, Schillberg S, Eibl R (2012) Prozessentwicklung und –übertragung vom 50 mL auf den 10 L Massstab. BIOspektrum 2:216

    Article  Google Scholar 

  • Cloutier M, Chen JK, De Dobbeleer C, Perrier M, Jolicoeur M (2009) A systems approach to plant bioprocess optimization. Plant Biotechnol J 7:939–951

    Article  CAS  Google Scholar 

  • Cuperus S, Eibl R, Hühn T, Amado R (2007) Plant cell culture-based platform: investigating biochemical processes in wine production. BioForum Europe 6:2–4

    Google Scholar 

  • Curtis WR (2004) Growing cells in a reservoir formed of a flexible sterile plastic liner. United States Patent. 6,709,862 B2

  • Donnez D, Kim KH, Antoine S, Conreux A, De Luca V, Jeandet P, Clement C, Courot E (2011) Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor. Process Biochem 46:1056–1062

    Article  CAS  Google Scholar 

  • Ducos JP, Terrier B, Courtois D (2009) Disposable bioreactors for plant micropropagation and mass plant cell culture. Adv Biochem Engin/Biotechnol 115:89–115

    Article  CAS  Google Scholar 

  • Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Dutta Gupta S, Baraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, pp 203–227

    Chapter  Google Scholar 

  • Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598

    Article  CAS  Google Scholar 

  • Eibl R, Werner S, Eibl D (2009a) Disposable bioreactors for plant liquid cultures at litre-scale: review. Eng Life Sci 9:156–164

    Article  CAS  Google Scholar 

  • Eibl R, Werner S, Eibl D (2009b) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Engin/Biotechnol 115:55–87

    Article  CAS  Google Scholar 

  • Eibl D, Peuker T, Eibl R (2011a) Single-use equipment in biopharmaceutical manufacture: a brief introduction. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. John Wiley & Sons, Hoboken, New Jersey, pp 3–11

    Google Scholar 

  • Eibl R, Löffelholz C, Eibl D (2011b) Single-use bioreactors—An overview. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, New Jersey, pp 33–51

    Chapter  Google Scholar 

  • Eibl R, Brändli J, Eibl D (2012) Plant cell bioreactors. In: Doelle HW, Rokem S, Berovic M (eds) Biotechnology, Encyclopedia of Life Support Systems (EOLSS). EOLSS Publishers, Oxford, www.eolss.net), [Retrieved] July 24, 2012

    Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant propagation. Plant Cell Tiss Org Cult 69:215–231

    Article  Google Scholar 

  • Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2006) Betalains by transformed Beta vulgaris roots in stirred-tank bioreactor: batch and fed-batch processes. In: Sorvari S, Toldi O (eds) Proceedings of Second International Congress on Bioreactor Technology in Cell, Tissue Cultures and Biomedical Applications. Karhukopio OY, Turku, Finland, pp 22–28

    Google Scholar 

  • Georgiev MI, Pavlov A, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  CAS  Google Scholar 

  • Georgiev MI, Georgiev V, Weber J, Bley T, Ilieva M, Pavlov A (2008) Agrobacterium rhizogenes-mediated genetic transformations: A powerful tool for the production of metabolites. In: Wolf T, Koch J (eds) Genetically modified plants. Nova Science Publishers, New York, USA, pp 99–126

    Google Scholar 

  • Georgiev MI, Abrashev R, Krumova E, Demirevska K, Ilieva M, Angelova M (2009a) Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: A comparative study. Appl Biochem Biotechnol 159:415–425

    Article  CAS  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009b) Bioprocessing plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  CAS  Google Scholar 

  • Georgiev MI, Ludwig-Muller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CAB International, Oxon, United Kingdom, pp 156–175

    Chapter  Google Scholar 

  • Georgiev MI, Ludwig-Muller J, Weber J, Stancheva N, Bley T (2011) Bioactive metabolite production and stress-related hormones in devil’s claw cell suspension cultures grown in bioreactors. Appl Microbiol Biotechnol 89:1683–1691

    Article  CAS  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Mueller J, Xu J (2012a) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

    Article  CAS  Google Scholar 

  • Georgiev V, Ivanov I, Berkov S, Ilieva M, Georgiev MI, Gocheva T, Pavlov A (2012b) Galanthamine production by Leucojum aestivum L. shoot culture in a modified bubble-column bioreactor with internal sections. Eng Life Sci 12:534–543

    Article  CAS  Google Scholar 

  • Girard LS, Fabis MJ, Courtois D, Petiard V, Koprowski H (2006) Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture. Biochem Biophys Res Commun 345:602–607

    Article  CAS  Google Scholar 

  • Gitzinger M, Parsons J, Reski R, Fussenegger M (2008) Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries. Plant Biotechnol J 7:73–86

    Article  Google Scholar 

  • Homova V, Weber J, Schulze J, Alipieva K, Bley T, Georgiev MI (2010) Devil’s claw hairy root culture in flasks and in a 3-L bioreactor: bioactive metabolite accumulation and flow cytometry. Z Naturforsch 65c:472–478

    Google Scholar 

  • Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Development of a low capital investment reactor system: application for plant cell culture. Biotechnol Prog 15:114–122

    Article  CAS  Google Scholar 

  • Hu FX, Huang JH, Xu YX, Qian XH, Zhong JJ (2006) Responses of defense signals, biosynthetic gene transcription and taxoid biosynthesis to elicitation by a novel synthetic jasmonate in cell cultures of Taxus chinensis. Biotechnol Bioeng 94:1064–1071

    Article  CAS  Google Scholar 

  • Hu WW, Zhong JJ (2001) Effect of bottom clearance on performance of air-lift bioreactor in high-density culture of Panax notoginseng cells. J Biosci Bioeng 92:389–392

    CAS  Google Scholar 

  • Hu WW, Yao H, Zhong JJ (2001) Improvement of Panax notoginseng cell culture for production of ginseng saponin and polysaccharide by high density cultivation in pneumatically agitated bioreactors. Biotechnol Prog 17:838–846

    Article  CAS  Google Scholar 

  • Huang TK, Plesha MA, McDonald KA (2010) Semicontinuous bioreactor production of a recombinant human therapeutic protein using a chemically inducible viral amplicon expression system in transgenic plant cell suspension cultures. Biotechnol Bioeng 106:408–421

    CAS  Google Scholar 

  • Ivanov I, Georgiev V, Georgiev MI, Ilieva M, Pavlov A (2011) Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl Biochem Biotechnol 163:268–277

    Article  CAS  Google Scholar 

  • Kim YJ, Weathers PJ, Wyslouzil BE (2002) Growth of Artemisia annua hairy roots in liquid- and gas-phase reactors. Biotechnol Bioeng 80:454–464

    Article  CAS  Google Scholar 

  • Klöckner W, Raven N, Gacem R, Anderlei T, Büchs J, Schillberg S (2012a) Orbitally-shaken disposable bioreactors—a promising approach for the production of proteins in tobacco cell suspensions. Presentation at GVC/DECHEMA conference, 5/15/2012, Freiburg, Germany

  • Klöckner W, Tissot S, Wurm F, Büchs J (2012b) Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors. Biochem Eng J 65:63–69

    Article  Google Scholar 

  • Kretzmer G (2002) Industrial processes with animal cells. Appl Microbiol Biotechnol 59:135–142

    Article  CAS  Google Scholar 

  • Krishnan R, Chen H (2012) A comprehensive strategy to evaluate single-use bioreactors for pilot-scale cell culture production. Am Pharm Rev 15 [Retrieved] November 4, 2012

  • Kusakari K, Yokoyama M, Inomata S, Gozu Y, Katagiri C, Sugimoto Y (2012) Large-scale production of saikosaponins through root culturing of Bupleurum falcatum L. using modified air-lift reactors. J Biosci Bioeng 113:99–105

    Article  CAS  Google Scholar 

  • Liu YK, Huang LF, Ho SL, Liao CY, Liu HY, Lai YH, Yu SM, Lu CA (2012) Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture. Biotechnol Bioeng 109:1239–1247

    Article  CAS  Google Scholar 

  • Liu CZ, Gou C, Wang YC, Ouyang F (2003) Comparison of various bioreactors on growth and artemisinin of Artemisia annua L. shoot cultures. Process Biochem 39:45–49

    Article  CAS  Google Scholar 

  • Liu C, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an air-lift reactor. Biotechnol Bioeng 102:1074–1086

    Article  CAS  Google Scholar 

  • Ludwig-Mueller J, Georgiev MI, Bley T (2008) Metabolite and hormonal status hairy root cultures of Devil’s claw (Harpagophytum procumbens) in flasks and in a bubble-column bioreactor. Process Biochem 43:15–23

    Article  CAS  Google Scholar 

  • Merchuk JC, Gluz M (1999) Bioreactors, air-lift reactors. In: Ficklinger MC, Stephen WD (eds) Encyclopedia of bioprocesss technology: fermentation, biocatalysis, bioseparation, vol 1. Wiley, New York, pp 320–353

    Google Scholar 

  • Misawa M (1994) Plant tissue culture: an alternative for production of useful metabolite. FAO Agricultural Services Bulletin, vol. 108

  • Onrubia M, Cusido RM, Ramirez K, Hernandez-Vazquez L, Moyano E, Bonfill M, Palazon J (2013) Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivates. Curr Med Chem 20(7):880–891

    CAS  Google Scholar 

  • Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

    CAS  Google Scholar 

  • Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Google Scholar 

  • Park CI, Lee SJ, Kang SH, Jung HS, Kim DI, Lim SM (2010) Fed-batch cultivation of transgenic rice cells for the production of hCTLA4Ig using concentrated amino acids. Process Biochem 45:67–74

    Article  CAS  Google Scholar 

  • Pavlov A, Georgiev MI, Ilieva M (2005) Production of rosmarinic acid by Lavandula vera MM cell suspension in bioreactor: effect of dissolved oxygen concentration and agitation. World J Microbiol Biotechnol 21:389–392

    Article  CAS  Google Scholar 

  • Pavlov A, Georgiev MI, Bley T (2007) Batch and fed-batch production of betalains by Red beet (Beta vulgaris) hairy roots in a bubble-column reactor. Z Naturforsch 62c:439–446

    Google Scholar 

  • Perez JAS, Porcel EMR, Lopez JLC, Sevilla JMF, Chisti Y (2006) Shear rate in stirred-tank and bubble-column bioreactors. Chem Eng J 124:1–5

    Article  Google Scholar 

  • Prakash G, Srivastava AK (2007) Azadirachtin production in stirred-tank reactors by Azadirachta indica suspension culture. Process Biochem 42:93–97

    Article  CAS  Google Scholar 

  • Prakash G, Srivastava AK (2011) Integrated yield and productivity enhancement strategy for biotechnological production of Azadirachtin by suspension culture of Azadirachta indica. Asia-Pacific J Chem Eng 6:129–137

    Article  CAS  Google Scholar 

  • Pietrzykowski M, Flanagan W, Pizzi V, Brown A, Sinclair A, Monge M (2011) An environmental life-cycle assessment comparing single-use and conventional process technology. BioPharm Int 24:30–38

    Google Scholar 

  • Qian ZG, Zhao ZJ, Xu YF, Qian XH, Zhong JJ (2004) Novel chemically synthesized hydroxyl-containing jasmonates as powerful inducing signals for plant secondary metabolism. Biotechnol Bioeng 86:809–816

    Article  CAS  Google Scholar 

  • Qian ZG, Zhao ZJ, Xu YF, Qian XH, Zhong JJ (2005) A novel synthetic fluoro-containing jasmonate derivative acts as a chemical inducing signal for plant secondary metabolism. Appl Microbiol Biotechnol 68:98–103

    Article  CAS  Google Scholar 

  • Rader R, Langer E (2012) Upstream single-use bioprocessing systems—future market trends and growth assessment. BioProcess Int 10:5

    Google Scholar 

  • Ramakrishnan D, Curtis WR (2004) Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics and oxygen mass transfer. Biotechnol Bioeng 88:248–260

    Article  CAS  Google Scholar 

  • Rao G, Moreira A, Brorson K (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102:348–356

    Article  CAS  Google Scholar 

  • Raposo S, Lima-Costa ME (2012) Effects of the hydrodynamic environment and oxygen mass transfer on plant cell growth and milk-clotting protease production in a stirred-tank reactor. Eng Life Sci 12:441–449

    Article  CAS  Google Scholar 

  • Raven N, Schillberg S, Kirchhoff J, Brändli J, Imseng N, Eibl R (2011) Growth of BY-2 suspension cells and plantibody production in single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, New Jersey, pp 251–261

    Chapter  Google Scholar 

  • Ritala A, Wahlström EH, Holkeri H, Hafren A, Mäkeläinen K, Baez J, Mäkinen K, Nuutila AM (2008) Production of a recombinant industrial protein using barley cell cultures. Protein Expres Purif 59:274–281

    Article  CAS  Google Scholar 

  • Roberts ML, Herrera-Herrera JL, Herrera-Herrera G, Herrera-Alamillo MA, Fuentes-Carillo PF (2006) A new temporary immersion bioreactor system for micropropagation. In: Loyola-Vargas VM, Vazquez-Flota F (eds) Plant cell culture protocols. Humana Press, Totowa, New Jersey, pp 121–129

    Google Scholar 

  • Routien JB, Nickell LG (1956) Cultivation of plant tissue. US Patent 2:747,334

    Google Scholar 

  • Sajc L, Grubisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99

    Article  Google Scholar 

  • Schürch C, Blum P, Zülli F (2008) Potential of plant cell culture for cosmetic application. Phytochem Rev 7:599–605

    Article  Google Scholar 

  • Shaaltiel Y, Kirshner Y, Shtainiz A, Naos Y, Shneor Y (2010) Large scale disposable bioreactor. EP 2150608 A2

  • Sivakumar G, Liu C, Towler MJ, Weathers PJ (2010) Biomass production of hairy roots of Artemisia annua and Arachis hypogaeae in a scaled-up mist bioreactor. Biotechnol Bioeng 107:802–813

    Article  CAS  Google Scholar 

  • Vanhamel S, Masy C (2011) Production of disposable bags: A manufacturer’s report. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, New Jersey, pp 113–134

    Chapter  Google Scholar 

  • Veliky IA, Martin SM (1970) A fermenter for plant cell suspension cultures. Can J Microbiol 16:223–226

    Article  CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wang SJ, Zhong JJ (1996a) A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol Bioeng 51:511–519

    Article  CAS  Google Scholar 

  • Wang SJ, Zhong JJ (1996b) A novel centrifugal impeller bioreactor. II. Oxygen transfer and power consumption. Biotechnol Bioeng 51:520–527

    Article  CAS  Google Scholar 

  • Watt MP (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035

    CAS  Google Scholar 

  • Weathers PJ, Towler MJ, Xu JF (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351

    Article  CAS  Google Scholar 

  • Werner S, Eibl R, Lettenbauer C, Röll M, Eibl D, DeJesus M, Zhang X, Stettler M, Tissot S, Bürki C, Broccard G, Kühner M, Tanner R, Baldi L, Hacker D, Wurm FM (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 Liters for suspension cultures of cells using disposable bags and containers—a Swiss contribution. Chimia 64:819–823

    Article  CAS  Google Scholar 

  • Werner S, Eibl D, Olownia J, Egger D (2012) 2-D orbitally shaken single-use bags: Engineering characterization and cell culture application examples. Presentation at GVC/DECHEMA conference, 5/15/2012, Freiburg, Germany

  • Werner S, Olownia J, Egger D, Eibl D (2013) Scale-up rules for orbitally shaken single-use cultivation systems being geometrically similar and non-similar. Chem Ingen Tech doi:10.1002/cite201200153

    Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  CAS  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable production of phytochemicals by plant in vitro cultures: anticancer agents. Plant Gene Res 3:90–100

    Article  CAS  Google Scholar 

  • Yue XG, Zhang W, Deng MC (2011) Hyper-production of C-13-labeled trans-resveratrol in Vitis vinifera suspension cell culture by elicitation and in situ adsorption. Biochem Eng J 53:292–296

    Article  CAS  Google Scholar 

  • Zhang ZY, Zhong JJ (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysaccharide by high-density cultivation of Panax notoginseng cells. Biotechnol Prog 20:1076–1081

    Article  CAS  Google Scholar 

  • Zhong JJ, Fujiyama K, Seki T, Yoshida T (1994) A quantitative analysis of shear effects on cell suspension and cell culture of Perilla frutescens in bioreactors. Biotechnol Bioeng 44:649–654

    Article  CAS  Google Scholar 

  • Zhong JJ (2001) (ed.) Plant cells. Adv Biochem Eng/Biotechnol, vol. 72. Springer-Verlag, Heidelberg

  • Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599

    CAS  Google Scholar 

  • Zhong JJ, Pan ZW, Wang ZY, Wu JY, Chen F, Takagi M, Yoshida T (2002) Effect of mixing time on taxoid production in suspension cultures of Taxus chinensis in a centrifugal impeller bioreactor. J Biosci Bioeng 94:244–250

    CAS  Google Scholar 

  • Zhong JJ (2011) Bioreactor Engineering. In: Murray M-Y (ed.), Comprehensive Biotechnology, Second Edition, vol. 2. Elsevier, pp. 165–177

  • Zhou TC, Zhou WW, Hu W, Zhong JJ (2010) Cell culture, bioreactors, commercial production. Encyclopedia of Industrial Biotechnology, vol. 2. Wiley, pp. 913–939

  • Zhou X, Zhong JJ (2011a) Quantitative influence of endogenous salicylic acid level on taxuyunnanine C biosynthesis in suspension cultures of Taxus chinensis. Biotechnol Bioeng 108:216–221

    Article  CAS  Google Scholar 

  • Zhou X, Zhong JJ (2011b) Intracellular salicylic acid is involved in signal cascade regulating low ammonium induced taxoid biosynthesis in suspension cultures of Taxus chinensis. Appl Microbiol Biotechnol 90:1027–1036

    Article  CAS  Google Scholar 

  • Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable pre-sterilized plastic biocontainers for the large-scale micropropagation of plants. In Vitro Cell Dev Biol Plant 34:152–158

    Article  Google Scholar 

  • Ziv M (2005) Bioreactor technology for plant micropropagation. Hort Rev 24:1–30

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Fund of Bulgaria (grant DO-02-261/2008 to MIG) is greatly appreciated. JJZ appreciates the financial support from the National Natural Science Foundation of China (NSFC) and the SJTU University Distinguished Professorship program as well as excellent collaboration with Prof. Xuhong Qian (ECUST) on novel synthetic elicitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen I. Georgiev.

Additional information

All authors equally contributed to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, M.I., Eibl, R. & Zhong, JJ. Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97, 3787–3800 (2013). https://doi.org/10.1007/s00253-013-4817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4817-x

Keywords

Navigation