Skip to main content
Log in

Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l−1 h−1. Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berovi M (1999) Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng 64:552–557

    Article  Google Scholar 

  2. Braud C, Bunel C, Vert M (1985) Poly(β-malic acid): a new polymeric drug-carrier. Polym Bull 13:293–299

    Article  CAS  Google Scholar 

  3. Daniel JW, Kelley J, Rusch HP (1962) Hematin requiring plasmodial myxomycete. J Bacteriol 84:1104–1110

    PubMed  CAS  Google Scholar 

  4. Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, Konda B, Wawrowsky KA, Fujita M, Karabalin N (2010) Inhibition of brain tumor growth by intravenous poly(β-l-malic acid) nanobioconjugate with pH-dependent drug release. PNAS 107:18143–18148. doi:10.1073/pnas.1003919107

    Article  PubMed  CAS  Google Scholar 

  5. Ding H, Portilla-Arias J, Patil R, Black KL, Ljubimova JY, Holler E (2011) The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials 32:5269–5278

    Article  PubMed  CAS  Google Scholar 

  6. Doig SD, Simpson H, Alphand V, Furstoss R, Woodley JM (2003) Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer-Villiger oxidations. Enzyme Microb Technol 32:347–355

    Article  CAS  Google Scholar 

  7. Fischer H, Erdmann S, Holler E (1989) An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase alpha in vitro. Biochemistry 28:5219–5226

    Article  PubMed  CAS  Google Scholar 

  8. George S, Richardson L, Pol I, Peck M (1998) Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157: H7, Salmonella enteritidis and Listeria monocytogenes. J Appl Microbiol 84:903–909

    Article  PubMed  CAS  Google Scholar 

  9. Holler E, Angerer B, Achhammer G, Miller S, Windisch C (1992) Biological and biosynthetic properties of poly-l-malate. FEMS Microbiol Rev 103:109–118

    CAS  Google Scholar 

  10. Kajiyama T, Kobayashi H, Taguchi T, Saito H, Kamatsu Y, Kataoka K, Tanaka J (2004) Synthesis of activated poly(α,β-malic acid) using N-hydroxysuccinimide and its gelation with collagen as biomaterials. Mater Sci Eng, C 24:815–819

    Article  Google Scholar 

  11. Lee B, Holler E (2000) β-Poly(l-malate) production by non-growing microplasmodia of Physarum polycephalum: effects of metabolic intermediates and inhibitors. FEMS Microbiol Lett 193:69–74

    PubMed  CAS  Google Scholar 

  12. Lin YH, Chien WS, Duan KJ (2010) Correlations between reduction-oxidation potential profiles and growth patterns of Saccharomyces cerevisiae during very-high-gravity fermentation. Process Biochem 45:765–770

    Article  CAS  Google Scholar 

  13. Liu CG, Lin YH, Bai FW (2011) A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment. Biochem Eng J 56:63–68

    Article  CAS  Google Scholar 

  14. Liu CG, Lin YH, Bai FW (2011) Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. J Biotechnol 153:42–47

    Article  PubMed  CAS  Google Scholar 

  15. Liu S, Steinbüchel A (1996) Investigation of poly(β-l-malic acid) production by strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 46:273–278

    Article  CAS  Google Scholar 

  16. Lund B, Wyatt G (1984) The effect of redox potential, and its interaction with sodium chloride concentration, on the probability of growth of Clostridium botulinum type E from spore inocula. Food Microbiol 1:49–65

    Article  CAS  Google Scholar 

  17. Manitchotpisit P, Skory CD, Peterson SW, Price NPJ, Vermillion KE, Leathers TD (2011) Poly(β-l-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. J Ind Microbiol Biotechnol 39:125–132

    Article  PubMed  Google Scholar 

  18. Nakajima-Kambe T, Hirotani N, Nakahara T (1996) Poly(β-malic acid) production by the non-growing cells of Aureobasidium sp. strain A-91. J Ferment Bioeng 82:411–413

    Article  CAS  Google Scholar 

  19. Pei J, Zhou Q, Jing Q, Li L, Dai C, Li H, Wiegel J, Shao W (2011) The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metab Eng 13:186–193

    Article  PubMed  CAS  Google Scholar 

  20. Riondet C, Cachon R, Wache Y, Alcaraz G, Divies C (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol 182:620–626

    Article  PubMed  CAS  Google Scholar 

  21. Shimada K, Matsushima K, Fukumoto J, Yamamoto T (1969) Poly-(l)-malic acid: a new protease inhibitor from Penicillium cyclopium. Biochem Biophys Res Commun 35:619–624

    Article  PubMed  CAS  Google Scholar 

  22. Unden G, Trageser M, Duchene A (1990) Effect of positive redox potentials (>+400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol Microbiol 4:315–319

    Article  PubMed  CAS  Google Scholar 

  23. Willibald B, Bildl W, Lee B, Holler E (1999) Is β-poly(l-malate) synthesis catalysed by a combination of β-l-malyl-AMP-ligase and PMLA polymerase? Eur J Biochem 265:1085–1090

    Article  PubMed  CAS  Google Scholar 

  24. Zhang H, Cai J, Dong J, Zhang D, Huang L, Xu Z, Cen P (2011) High-level production of poly(β-l-malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol 92:295–303

    Article  PubMed  CAS  Google Scholar 

  25. Zambianchi F, Raimondi S, Pasta P, Carrea G, Gaggero N, Woodley JM (2004) Comparison of cyclohexanone monooxygenase as an isolated enzyme and whole cell biocatalyst for the enantioselective oxidation of 1,3-dithiane. J Mol Catal B Enzym 31:165–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Chinese Academy of Sciences’ Knowledge Innovation Program for the financial support (grant no. KSCX2-EW-G-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Su or Yinhua Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Luo, J., Zhao, J. et al. Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. J Ind Microbiol Biotechnol 39, 1073–1080 (2012). https://doi.org/10.1007/s10295-012-1111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1111-3

Keywords

Navigation