Skip to main content

Advertisement

Log in

Recent research on geometry education: an ICME-13 survey team report

  • Survey Paper
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This survey on the theme of Geometry Education (including new technologies) focuses chiefly on the time span since 2008. Based on our review of the research literature published during this time span (in refereed journal articles, conference proceedings and edited books), we have jointly identified seven major threads of contributions that span from the early years of learning (pre-school and primary school) through to post-compulsory education and to the issue of mathematics teacher education for geometry. These threads are as follows: developments and trends in the use of theories; advances in the understanding of visuo spatial reasoning; the use and role of diagrams and gestures; advances in the understanding of the role of digital technologies; advances in the understanding of the teaching and learning of definitions; advances in the understanding of the teaching and learning of the proving process; and, moving beyond traditional Euclidean approaches. Within each theme, we identify relevant research and also offer commentary on future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelfatah, H. (2011). A story-based dynamic geometry approach to improve attitudes toward geometry and geometric proof. ZDM—The International Journal on Mathematics Education, 43(3), 441–450.

    Article  Google Scholar 

  • Alsina, C., & Nelsen, R. B. (2006). Math Made Visual: Creating Images for Understanding Mathematics. Washington: The Mathematical Association of America.

    Book  Google Scholar 

  • Ambrose, R., & Kenehan, G. (2009). Children’s evolving understanding of polyhedra in the classroom. Mathematical Thinking and Learning, 11(3), 158–176.

    Article  Google Scholar 

  • Arici, S., & Aslan-Tutak, F. (2015). The effect of origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179–200.

    Article  Google Scholar 

  • Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana de Investigación en Matemática Educativa. Special Issue on Semiotics, Culture, and Mathematical Thinking, 9(1), 267–300.

    Google Scholar 

  • Arzarello, F., Bairral, M. A., & Danè, C. (2014). Moving from dragging to touchscreen: geometrical learning with geometric dynamic software. Teaching Mathematics and its Applications, 33(1), 39–51.

    Article  Google Scholar 

  • Arzarello, F., Bartolini Bussi, M. G., Leung, A., Mariotti, M. A., & Stevenson, I. (2012). Experimental approach to theoretical thinking: Artefacts and proofs. In G. Hanna & M. De Villers (Eds.), Proof and Proving in Mathematics Education: The 19th ICMI Study (New ICMI Study Series) (pp. 97–137). Berlin: Springer.

    Google Scholar 

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM, 34(3), 66–72.

    Google Scholar 

  • Atebe, H. U., & Schäfer, M. (2008). “As soon as the four sides are all equal, then the angles must be 90°”. Children’s misconceptions in geometry. African Journal of Research in Science, Mathematics and Technology Education, 12(2), 47–66.

    Google Scholar 

  • Atebe, H. U., & Schäfer, M. (2011). The nature of geometry instruction and observed learning-outcomes opportunities in Nigerian and South African high schools. African Journal of Research in Mathematics, Science and Technology Education, 15(2), 191–204.

    Google Scholar 

  • Baccaglini-Frank, A. (2011). Abduction in generating conjectures in dynamic geometry through maintaining dragging. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 110–119). Poland: Rzeszów.

    Google Scholar 

  • Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2013). Reasoning by contradiction in dynamic geometry. PNA, 7(2), 63–73.

    Google Scholar 

  • Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: the maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.

    Article  Google Scholar 

  • Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. V. Martinez & A. C. Superfine (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 2–15). IL, United States: Chicago.

    Google Scholar 

  • Balacheff, N., & Margolinas, C. (2005). cK¢ Modèle des connaissances pour le calcul de situation didactiques. In A. Mercier & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Barany, M., & MacKenzie, D. (2014). Chalk: Materials and concepts in mathematics research. In C. Coopmans, J. Vertesi, M. Lynch, & S. Woolgar (Eds.), Representation in scientific practice revisited (pp. 107–130). Cambridge: The MIT Press.

    Chapter  Google Scholar 

  • Bartolini Bussi, M. G. (2007). Semiotic mediation: fragments from a classroom experiment on the coordination of spatial perspectives. ZDM—The International Journal on Mathematics Education, 39(1), 63–71.

    Article  Google Scholar 

  • Bartolini Bussi, M. G. (2010). Historical artefacts, semiotic mediation and teaching proof. In G. Hanna, et al. (Eds.), Explanation and proof in mathematics: philosophical and educational perspectives (pp. 151–167). New York: Springer.

    Chapter  Google Scholar 

  • Bartolini Bussi, M. G., & Baccaglini-Frank, A. (2015). Geometry in early years: sowing the seeds towards a mathematical definition of squares and rectangles. ZDM Mathematics Education, 47(3), 391–405.

    Article  Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artefacts and signs after a Vygotskian perspective. In: L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education (pp. 720–749, 2nd éd.). Mahwah: Erlbaum.

  • Bartolini Bussi, M. G., Taimina, D., & Isoda, M. (2010). Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: from Felix Klein to present applications in mathematics classrooms in different parts of the world. ZDM—The International Journal on Mathematics Education, 42(1), 19–31.

    Article  Google Scholar 

  • Baulac, Y., Bellemain, F., & Laborde, J. M. (1988). Cabri-géomètre, un logiciel d'aide à l'enseignement de la géométrie, logiciel et manuel d'utilisation, Paris: Cedic-Nathan

    Google Scholar 

  • Bautista, A., & Roth, W.-M. (2012). Conceptualizing sound as a form of incarnate mathematical consciousness. Educational Studies in Mathematics, 79(1), 1–19.

    Article  Google Scholar 

  • Bonnard, Q., Verma, H., Kaplan, F., & Dillenbourg, P. (2012). Paper interfaces for learning geometry. In: A. Ravenscroft, S. Lindstaedt, C. Kloos, and D. Hernández-Leo (eds.) 21st Century Learning for 21st Century Skills; Lecture Notes in Computer Science (vol 7563; pp. 37–50). Berlin: Springer.

  • Bryant, P. (2008). Paper 5: understanding spaces and its representation in mathematics. In: T. Nunez, P. Bryant, & A. Watson (Eds.), Key understanding in mathematics learning: a report to the nuffield foundation. Retrieved from http://www.nuffieldfoundation.org/sites/default/files/P5.pdf.

  • Bu, L., & Haciomeroglu, E. S. (2010). Sliders in dynamic mathematics learning environments: their pedagogical roles. Mathematics and Computer Education, 44(3), 213–221.

  • Burgmanis, Ģ., Krišjāne, Z., & Šķilters, J. (2014). Acquisition of spatial knowledge in different urban areas: evidence from a survey analysis of adolescents. International Quarterly of Cognitive Science, 15(3), 373–383.

    Google Scholar 

  • Camou, B.J. (2012). High school students’ learning of 3D geometry using iMAT (integrating Multitype-representations, Approximations and Technology) engineering. (Doctoral dissertation), University of Georgia.

  • Camou, B., Olive, J., Colucci, M., & Garcia, G. (2013). Essential 3D geometry. San Diego: University Readers.

    Google Scholar 

  • Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269–309.

    Article  Google Scholar 

  • Chang, K. E., Wu, L. J., Lai, S. C., & Sung, Y. T. (2014). Using mobile devices to enhance the interactive learning for spatial geometry. Interactive Learning Environments, 23(1), 1–19.

    Google Scholar 

  • Chen, C.-L., & Herbst, P. (2013). The interplay among gestures, discourse, and diagrams in students’ geometrical reasoning. Educational Studies in Mathematics, 83(2), 285–307.

    Article  Google Scholar 

  • Cheng, K., Huttenlocher, J., & Newcombe, N. (2013). 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic Bulletin and Review, 20(6), 1033–1054.

    Article  Google Scholar 

  • Cheng, Y.-L., & Mix, K. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.

    Article  Google Scholar 

  • Choi, K., & Oh, S. Kyoung. (2008). Teachers’ conceptual errors related to the definitions in the area of geometry of elementary school mathematics. Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, 47(2), 197–219.

  • Choi, S. I., & Kim, S. J. (2013). A study on students’ understanding of figures through descriptive assessment. East Asian Mathematical Journal, 29(2), 207–239.

    Article  Google Scholar 

  • CindyJS Project (2015). CindyJS: A JavaScript framework for interactive (mathematical) content, http://cindyjs.org. Accessed 20 June 2016.

  • Clements, M. (2012). A historical overview of visualisation and visualising in mathematics education. Israel: Paper presented at the Retirement Symposium of Ted Eisenberg.

    Google Scholar 

  • Clements, D. H., Sarama, J., Spitler, M. E., Lange, A. A., & Wolfe, C. B. (2011). Mathematics learned by young children in an intervention based on learning trajectories: a large-scale cluster randomized trial. Journal for Research in Mathematics Education, 42(2), 127–166.

    Google Scholar 

  • David, M., & Tomaz, V. (2012). The role of visual representations for structuring classroom mathematical activity. Educational Studies in Mathematics, 80(3), 413–431.

    Article  Google Scholar 

  • Davis, B., & Spatial Reasoning Study Group. (2015). Spatial reasoning in the early years: Principles, assertions, and speculations. New York: Routledge.

    Google Scholar 

  • De Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1), 133–152.

    Google Scholar 

  • De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the Learning of Mathematics, 14(1), 11–18.

    Google Scholar 

  • De Villiers, M. (2007). A hexagon result and its generalization via proof. The Montana Mathematics Enthusiast, 4(2), 188–192.

  • De Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. The International Journal of Mathematical Education in Science and Technology, 35(5), 703–724.

    Article  Google Scholar 

  • De Villiers, M. (2011). Simply symmetric. Learning and Teaching Mathematics, 11, 22–26.

    Google Scholar 

  • De Villiers, M. (2012). Generalizing a problem of Sylvester. The Mathematical Gazette, 96(535), 78–81.

    Article  Google Scholar 

  • De Villiers, M., Govender, R., & Patterson, N. (2009). Defining in Geometry. In T. Craine & R. Rubinstein (Eds.), Seventy-first NCTM Yearbook: Understanding Geometry for a Changing World (pp. 189–203). Reston: NCTM.

    Google Scholar 

  • Ding, L., Jones, K., & Zhang, D. (2015). Teaching geometrical theorems in grade 8 using the ‘Shen Tou’ method: a case study in Shanghai. In: L. Fan, N-Y. Wong, J. Cai & S. Li (Eds.), How Chinese teach mathematics: perspectives from insiders (pp. 279–312). Singapore: World Scientific.

  • Doyle, R. A., Voyer, D., & Cherney, I. D. (2012). The relation between childhood spatial activities and spatial abilities in adulthood. Journal of Applied Developmental Psychology, 33(2), 112–120.

    Article  Google Scholar 

  • Duatepe-Paksu, A., & Ubuz, B. (2009). Effects of drama-based geometry instruction on student achievement, attitudes, and thinking levels. The journal of Educational Research, 102(4), 272–285.

    Article  Google Scholar 

  • Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st Century: an ICMI study (pp. 37–52). Dordrecht: Kluwer.

    Google Scholar 

  • Duval, R. (2005). Les conditions cognitives de l’apparentissage de la géométrie: Développement de la visualisation, differenciation des raisonnement et coordination de leurs fonctionnements. Annales de didactique et sciences cognitives, 10, 5–53.

    Google Scholar 

  • Ehmann, M., Gerhauser, M., Miller, C., & Wassermann, A. (2013). Sketchometry and jsxgraph: dynamic geometry for mobile devices. South Bohemia Mathematical Letters, 21(1), 1–7.

    Google Scholar 

  • Erdogan, E. O., & Dur, Z. (2014). Preservice mathematics teachers’ personal figural concepts and classifications about quadrilaterals. Australian Journal of Teacher Education, 39(6), 107–133.

    Google Scholar 

  • Erez, M., & Yerushalmy, M. (2006). “If you can turn a rectangle into a square, you can turn a square into a rectangle”: young students’ experience the dragging tool. International Journal of Computers for Mathematical Learning, 11(3), 271–299.

    Article  Google Scholar 

  • Fahlgren, M., & Brunström, M. A. (2014). A model for task design with focus on exploration, explanation, and generalization in a dynamic geometry environment. Technology, Knowledge and Learning, 19(3), 1–29.

    Article  Google Scholar 

  • Fischbein, E. (1993). The theory of figural concepts. Educational studies in mathematics, 24(2), 139–162.

    Article  Google Scholar 

  • Forsythe, S. K. (2015). Dragging maintaining symmetry: can it generate the concept of inclusivity as well as a family of shapes? Research in Mathematics Education, 17(3), 198–219.

    Article  Google Scholar 

  • Foster, C. (2014). Being inclusive. Mathematics in School, 43(3), 12–13.

    Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht: Reidel.

    Google Scholar 

  • Fujita, T. (2012). Learners’ level of understanding of the inclusion relations of quadrilaterals and prototype phenomenon. Journal of Mathematical Behavior, 31(1), 60–72.

    Article  Google Scholar 

  • Fujita, T., & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: towards a theoretical framing. Research in Mathematics Education, 9(1&2), 3–20.

    Article  Google Scholar 

  • Fujita, T., Jones, K., & Kunimune, S. (2010). Student’s geometrical constructions and proving activities: a case of cognitive unity? In: Pinto, M. F., & Kawasaki, T. F., (Eds.), Proceedings of the 34th International Conference of PME (Vol. 3, pp. 9–16). Belo Horizonte, Brazil.

  • Fyhn, A. (2008). A climbing class’ reinvention of angles. Educational Studies in Mathematics, 67(1), 19–35.

    Article  Google Scholar 

  • Gal, H., & Lew, H. C. (2008). Is a rectangle a parallelogram? Towards a bypass of Van Hiele Level 3 decision making. In H. N. Jahnke & H.-C. Lew (Eds.), The 11th International Congress on Mathematical Education. Mexico: Monterrey.

    Google Scholar 

  • Gal, H., & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163–183.

    Article  Google Scholar 

  • Gerhäuser, M., Valentin, B., & Wassermann, A. (2010). JSXGraph: dynamic Mathematics with JavaScript. International Journal for Technology in Mathematics Education, 17(4), 211–215.

    Google Scholar 

  • Giofrè, D., Mammarella, I. C., Ronconi, L., & Cornoldi, C. (2013). Visuospatial working memory in intuitive geometry, and in academic achievement in geometry. Learning and Individual Differences, 23, 114–122.

    Article  Google Scholar 

  • Gol Tabaghi, S., & Sinclair, N. (2013). Using dynamic geometry software to explore eigenvectors: the emergence of dynamic-synthetic-geometric thinking. Technology, Knowledge and Learning, 18(3), 149–164.

    Article  Google Scholar 

  • Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Cambridge: Belknap, Harvard University Press.

  • Gómez-Chacón, I. M., & Kuzniak, A. (2015). Spaces for geometric work: figural, instrumental, and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13(1), 201–226.

    Article  Google Scholar 

  • González, G., & Herbst, P. (2009). Students’ conceptions of congruency through the use of dynamic geometry software. International Journal of Computers for Mathematical Learning, 14(2), 153–182.

    Article  Google Scholar 

  • Govender, R., & De Villiers, M. (2004). A dynamic approach to quadrilateral definitions. Pythagoras, 58, 34–45.

    Google Scholar 

  • Gravina, M. A. (2008). Drawing in movement and insights for the proof process. International Journal of Continuing Engineering Education and Life-Long Learning, 18(5/6), 564–574.

    Article  Google Scholar 

  • Gray, J. (2005). Felix Klein’s Erlangen Program, ‘Comparative considerations of recent geometrical researches’ (1872). In I. Grattan-Guiness (Ed.), Landmark Writings in Western Mathematics, 1640–1940 (pp. 544–552). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gu, L. (1992). The Qingpu experience. In: Paper presented at the 7th International Congress of Mathematical Education, Quebec.

  • Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: An effective way of mathematics teaching in China. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How Chinese learn mathematics: perspectives from insiders (pp. 309–345). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Güçler, B., Hegedus, S., Robidoux, R., & Jackiw, N. (2013). Investigating the mathematical discourse of young learners involved in multi-modal mathematical investigations: the case of haptic technologies. In D. Martinovic, V. Freiman, & Z. Karadag (Eds.), Visual mathematics and cyberlearning (pp. 97–118). Berlin: Springer.

    Chapter  Google Scholar 

  • Gutiérrez, A., Jaime, A., & Fortuny, J. M. (1991). An alternative paradigm to evaluate the acquisition of the van Hiele levels. Journal for Research in Mathematics Education, 22(3), 237–251.

    Article  Google Scholar 

  • Guven, B., & Baki, A. (2010). Characterizing student mathematics teachers’ levels of understanding in spherical geometry. International Journal of Mathematical Education in Science and Technology, 41(8), 991–1013.

    Article  Google Scholar 

  • Guven, B., & Karatas, I. (2009). Students discovering spherical geometry using dynamic geometry software. International Journal of Mathematical Education in Science and Technology, 40(3), 331–340.

    Article  Google Scholar 

  • Hare, A. & Sinclair, N. (2015). Pointing in an undergraduate abstract algebra lecture: interface between speaking and writing. Proceedings of the 39th conference of the international group for the psychology of mathematics education, Australia: Hobart.

  • Haßler, B., Hennessy, S., Cross, A., Chileshe, E., & Machiko, B. (2014). School-based professional development in a developing context: lessons learnt from a case study in Zambia. Professional Development in Education, pp 1–20.

  • Hatterman, M. (2010). A first application of new theoretical terms on observed dragging modalities in 3D Dynamic Geometry Environments. In: Pinto, M. F., & Kawasaki, T. F., (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 57–64), Brazil.

  • Hawkins, A., & Sinclair, N. (2008). Explorations with Sketchpad in topogeometry. International Journal of Computers for Mathematical Learning, 13(1), 71–82.

    Article  Google Scholar 

  • Healy, L., & Fernandes, S. H. A. A. (2011). The role of gestures in the mathematical practices of those who do not see with their eyes. Educational Studies in Mathematics, 77(2), 157–174.

    Article  Google Scholar 

  • Healy, L., & Powell, A. (2013). Understanding and overcoming “disadvantage” in learning mathematics. In: M. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education. International Handbooks of Education. New York: Springer.

  • Hegedus, S. J., & Moreno-Armella, L. (2010). Accommodating the instrumental genesis framework within dynamic technological environments. For the Learning of Mathematics, 30(1), 26–31.

    Google Scholar 

  • Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 70–95). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hodge, A., & Frick, K. (2009). University preparation of pre-service secondary geometry teachers: a need for research. Journal of Mathematical Sciences and Mathematics Education, 4(1), 28–36.

    Google Scholar 

  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192.

    Google Scholar 

  • Hollebrands, K. F., Conner, A., & Smith, R. C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324–350.

    Google Scholar 

  • Hung, P. H., Hwang, G. J., Lee, Y. H., & Su, I. (2012). A cognitive component analysis approach for developing game-based spatial learning tools. Computers & Education, 59(2), 762–773.

  • Iijama, Y. (2012). GC/HTML5: dynamic geometry software which can be used with Ipad and PC—feature of software and some lessons with it. In: The proceedings of the 12th International Congress on Mathematical Education. COEX, Seoul, Korea.

  • Ingraham, M. (2013). Incorporating iPad technology into the classroom: a geometry project. Ohio Journal of School Mathematics, 2013(67), 27–32.

    Google Scholar 

  • Isotani, S., Pedro, L. Z., Reis, H. M., Borges, S. S., Lopes, A. M., Souza, J., Brandão, A. F. & Brandão, L. O. (2014). Interactive geometry goes mobile with GeoTouch. In: 2014 IEEE 14th international conference on advanced learning technologies (ICALT) (pp. 181–185). Sao Paulo, Brazil.

  • Jackiw, N. (1989). The Geometer’s Sketchpad (Computer Software). Berkeley: Key Curriculum Press.

    Google Scholar 

  • Jackiw, N. (2013). Touch and multitouch in dynamic geometry: Sketchpad explorer and “digital” mathematics. In E. Faggiano & A. Montone (Eds.), Proceedings of the 11th International Conference on Technology in Mathematics Teaching (pp. 149–155). Italy: Bari.

    Google Scholar 

  • Jackiw, N., & Sinclair, N. (2009). Sounds and pictures: dynamism and dualism in dynamic geometry. ZDM—The International Journal on Mathematics Education, 41(4), 413–426.

    Article  Google Scholar 

  • Jahnke, H. N., & Wamback, R. (2013). Understanding what a proof is: a classroom-approach. ZDM—The International Journal on Mathematics Education, 45(3), 469–482.

    Article  Google Scholar 

  • Jawahir, R. (2013). Effective learning and teaching strategies of two-dimensional geometry at the upper primary grades in Mauritius. (PhD), University of Technology, Mauritius.

  • Jirout, J., & Newcombe, N. (2015). Building blocks for developing spatial skills: evidence from a large, representative U.S. sample. Psychological Science, 26(3), 302–310.

    Article  Google Scholar 

  • Jo, I., & Bednarz, S. (2014). Dispositions toward teaching spatial thinking through geography: conceptualization and an exemplar assessment. Journal of Geography, 113(5), 198–207.

    Article  Google Scholar 

  • Jones, K., & Fujita, T. (2013). Characterising triangle congruency in lower secondary school: the case of Japan. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 655–664). Turkey: Antalya.

    Google Scholar 

  • Jones, K., & Herbst, P. (2011). Proof, proving, and teacher-student interaction: theories and contexts. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education: the 19th ICMI study (pp. 261–277). Berlin: Springer.

    Chapter  Google Scholar 

  • Jones, K., Mackrell, K., & Stevenson, I. (2010). Designing digital technologies and learning activities for different geometries. In: C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: rethinking the terrain. The 17th ICMI study (pp. 47–60). New York: Springer.

  • Junius, P. (2008). A case example of insect gymnastics: how is non-Euclidean geometry learned? International Journal of Mathematical Education in Science and Technology, 39(8), 987–1002.

    Article  Google Scholar 

  • Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: prototypicality and inclusion. ZDM Mathematics Education, 47(3), 407–420.

    Article  Google Scholar 

  • Kim, D., & Ju, M. (2012). A changing trajectory of proof learning in the geometry inquiry classroom. ZDM—The International Journal on Mathematics Education, 44(2), 149–160.

    Article  Google Scholar 

  • Kim, M., Roth, W.-M., & Thom, J. (2011). Children’s gestures and the embodied knowledge of geometry. International Journal of Science and Mathematics Education, 9(1), 207–238.

    Article  Google Scholar 

  • Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen (Das Erlanger Programm). Erlangen: A. Deichert.

  • Kortenkamp, U., & Dohrmann, C. (2010). User interface design for dynamic geometry software. Acta Didactica Napocensia, 3(2), 59–66.

    Google Scholar 

  • Kuzniak, A. (2014). Understanding the nature of the geometric work through its development and its transformation. In: S. Rezat, M. Hattermann, & A. Peter–Koop (Eds.), Transformation: a fundamental idea of mathematics education (pp. 311–325). New York: Springer.

  • Laborde, C., & Laborde, J.-M. (2014). Dynamic and tangible representations in mathematics education. In S. Rezat, M. Hattermann, & A. Peter-Koop (Eds.), Transformation: A Fundamental Idea of Mathematics Education (pp. 187–202). New York: Springer.

    Chapter  Google Scholar 

  • Lai, K., & White, T. (2014). How groups cooperate in a networked geometry learning environment. Instructional Science, 42(4), 615–637.

    Article  Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Latsi, M., & Kynigos, C. (2012). Experiencing 3D simulated space through different perspectives. In A. Jimoyiannis (Ed.), Research on e-Learning and ICT in Education: Technological, Pedagogical and Instructional Issues (pp. 183–196). Berlin: Springer.

    Chapter  Google Scholar 

  • Lord, N. (2008). Maths bite: Averaging polygons. The Mathematical Gazette, 92(523), 134.

  • Lavicza, Z., Hohenwarter, M., Jones, K., Lu, A., & Dawes, M. (2010). Establishing a professional development network around dynamic mathematics software in England. International Journal for Technology in Mathematics Education, 17(4), 177–182.

    Google Scholar 

  • Lee, C. Y., & Chen, M. J. (2014). The impacts of virtual manipulatives and prior knowledge on geometry learning performance in junior high school. Journal of Educational Computing Research, 50(2), 179–201.

    Article  Google Scholar 

  • Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: young children’s use of length, angle, distance, and direction in a reorientation task. Cognition, 123(1), 144–161.

    Article  Google Scholar 

  • Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 137–167). Mahwah: Erlbaum.

    Google Scholar 

  • Leikin, R., & Grossman, D. (2013). Teachers modify geometry problems: from poof to investigation. Educational Studies in Mathematics, 82(3), 515–531.

    Article  Google Scholar 

  • Lénárt, I. (2003). Non-Euclidean adventures on the Lénárt sphere. Emeryville: Key Curriculum Press.

    Google Scholar 

  • Leung, A. (2008a). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13(2), 135–157.

    Article  Google Scholar 

  • Leung, I. K. C. (2008b). Teaching and learning of inclusive and transitive properties among quadrilaterals by deductive reasoning with the aid of SmartBoard. ZDM—The International Journal on Mathematics Education, 40(6), 1007–1021.

    Article  Google Scholar 

  • Leung, A. (2009). Written proof in dynamic geometry environment: inspiration from a student’s work. In: Lin, F-L., Hsieh, F-J., Hanna, G., & De Viller, M. (Eds.). Proceedings of the ICMI 19 study conference: proof and proving in mathematics education (vol. 2, pp. 15–20). Taipei, Taiwan.

  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM—The International Journal on Mathematics Education, 43(3), 325–336.

    Article  Google Scholar 

  • Leung, A. (2012). Variation and mathematics pedagogy. In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), Mathematics education: Expanding horizons: Proceedings of the 35th annual conference of the Mathematics Education Research Group of Australasia (Vol. 2, pp. 435–442). Singapore: MERGA Inc.

    Google Scholar 

  • Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernement in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460.

    Article  Google Scholar 

  • Leung, A., & Bolite-Frant, J. (2015). Designing mathematics tasks: the role of tools. In A. Watson & M. Ohtani (Eds.), Task Design in Mathematics Education: The 22nd ICMI Study (New ICMI Study Series) (pp. 191–225). New York: Springer.

    Chapter  Google Scholar 

  • Leung, A., & Lee, A. M. S. (2013). Students’ geometrical perception on a task-based dynamic geometry platform. Educational Studies in Mathematics, 82(3), 361–377.

    Article  Google Scholar 

  • Levenson, E., Tirosh, D., & Tsamir, P. (2011). Preschool geometry. Theory, research, and practical perpectives. Rotterdam: Sense Publishers.

  • Lowrie, T., Logan, T., & Scriven, B. (2012). Perspectives on geometry and measurement in the Australian curriculum: mathematics. In: B. Atweh, M. Goos, R. Jorgensen, & D. Siemon (Eds.), Engaging the Australian National Curriculum: mathematicsperspectives from the field. Online Publication (pp. 71–88). Adelaide: Australia: Mathematics Education Research Group of Australasia.

  • Luitel, B. C. (2009). Culture, worldview and transformative philosophy of mathematics education in Nepal: a cultural-philosophical inquiry. Curtin, Perth.

  • Luitel, B. C. (2013). Mathematics as an im/pure knowledge system, symbiosis, (w)holism and synergy in mathematics education., 11, 65–87. International Journal of Science and Mathematics Education, 11, 65–87.

    Article  Google Scholar 

  • Mackrell, K. (2011). Design decisions in interactive geometry software. ZDM The International Journal on Mathematics Education., 43(3), 373–387.

    Article  Google Scholar 

  • Mainali, B. R. (2008). Comparison of traditional teaching and learning of reflection and rotation in a Nepalese high school with an ICT-rich, student-centered, guided discovery approach. (Masters), University of Amsterdam, Amsterdam, The Netherlands. Retrieved from http://www.scriptiesonline.uba.uva.nl/. Accessed 17 June 2016.

  • Mainali, B. R., & Key, M. B. (2012). Using dynamic geometry software GeoGebra in developing countries: A case study of impressions of mathematics teachers in Nepal. International Journal for Mathematics Teaching and Learning, 12, 1–21.

  • Mammana, M. F., Micale, B., & Pennisi, M. (2009). Quadrilaterals and tetrahedra. International Journal of Mathematical Education in Science and Technology, 40(6), 817–828.

    Article  Google Scholar 

  • Mammana, M. F., Micale, B., & Pennisi, M. (2012). Analogy and dynamic geometry system used to introduce three-dimensional geometry. International Journal of Mathematical Education in Science and Technology, 43(6), 818–830.

    Article  Google Scholar 

  • Mammarella, I., Giofrè, D., Ferrara, R., & Cornoldi, C. (2013). Intuitive geometry and visuospatial working memory in children showing symptoms of nonverbal learning disabilities. Child Neuropsychology, 19(3), 235–249.

    Article  Google Scholar 

  • Mariotti, M. A. (2007). Geometrical proof: the mediation of a microworld. In P. Boero (Ed.), Theorems in School: From History, Epistemology, and Cognition to Classroom Practice (pp. 285–304). Rotterdam: Sense Publishers.

    Google Scholar 

  • Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In S. Rezat, M. Hattermann, & A. Peter-Koop (Eds.), Transformation—A Fundamental Idea of Mathematics Education (pp. 155–172). New York: Springer.

    Chapter  Google Scholar 

  • Mariotti, M. A., & Fischbein, E. (1997). Defining in classroom activities. Educational Studies in Mathematics, 34, 219–248.

    Article  Google Scholar 

  • Markovic, Z., & Romano, D. A. (2013). Gaining insight of how elementary school students conceptualize geometric shape of parallelogram. Open Mathematical Education Notes, 3, 31–41.

    Google Scholar 

  • Marton, F., Runesson, U., & Tsui, A. B. M. (2004). The space of learning. In F. Marton & A. B. M. Tsui (Eds.), Classroom discourse and the space of learning (pp. 3–40). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Maschietto, M., & Bartolini Bussi, M. G. (2009). Working with artefacts: gestures, drawings and speech in the construction of the mathematical meaning of the visual pyramid. Educational Studies in Mathematics, 70(2), 143–157.

    Article  Google Scholar 

  • Massarwe, K., Verner, I., & Bshouty, D. (2010). Pathways of creativity: Joyful learning of geometry through analysis and construction of ornaments. Mediterranean Journal for Research in Mathematics Education. Special Issue Intercultural Aspects of Creativity: Challenges and Barriers, 9(2), 93–105.

    Google Scholar 

  • Menz, P. (2015). Unfolding of Diagramming and Gesturing between Mathematics Graduate Student and Supervisor during Research Meetings. Ph.D dissertation, Department of Mathematics, Simon Fraser University.

  • Miyazaki, M., Fujita, T., & Jones, K. (2015). Flow-chart proofs with open problems as scaffolds for learning about geometrical proof. ZDM Mathematics Education, 47(7), 1211–1224.

    Article  Google Scholar 

  • Morgan, C., & Alshwaikh, J. (2012). Communicating experience of 3D space: mathematical and everyday discourse. Mathematical Thinking and Learning, 14(3), 199–225.

    Article  Google Scholar 

  • Moutsios-Rentzos, A., & Spyrou, P. (2013). The need for proof in geometry: a theoretical investigation through Husserl’s phenomenology. In: Lindmeier, A. M. & Heinze, A. (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 329–336). Kiel, Germany.

  • Neel-Romine, L. E., Paul, S., & Shafer, K. G. (2012). Get to know a circle. Mathematics Teaching in the Middle School, 18(4), 222–227. doi:10.5951/mathteacmiddscho.18.4.0222

  • Newcombe, N., & Stieff, M. (2012). Six myths about spatial thinking. International Journal of Science Education, 34(6), 955–971.

    Article  Google Scholar 

  • Newton, J. (2010). An examination of K-8 geometry state standards through the lens of van Hiele levels of geometric thinking. In J. P. Smith (Ed.), Variability is the rule: a companion analysis of K-8 state mathematics standards (pp. 71–94). Charlotte: Information Age Publishing.

    Google Scholar 

  • Ng, O., & Sinclair, N. (2015a). Young children reasoning about symmetry in a dynamic geometry environment. ZDM Mathematics Education, 47(3), 421–434.

    Article  Google Scholar 

  • Ng, O., & Sinclair, N. (2015b). “Area without numbers”: using touchscreen dynamic geometry to reason about shape. Canadian Journal of Science, Mathematics and Technology Education, 15(1), 84–101.

    Article  Google Scholar 

  • Okazaki, M. (2009). Process and means of reinterpreting tacit properties in understanding the inclusion relations between quadrilaterals. In: Tzekaki, M., Kaldrimidou, M., & Sakonidis, C., (Eds.), Proceedings of the 33rd conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 249–256). Thessaloniki, Greece.

  • Okazaki, M. (2013). Identifying situations for fifth graders to construct definitions as conditions for determining geometric figures. In: Proceedings of the 37th conference of the international group for the psychology of mathematics education (Vol. 3, pp. 409–416). Kiel, Germany.

  • Okazaki, M., & Fujita, T. (2007). Prototype phenomena and common cognitive paths in the understanding of the inclusion relations between quadrilaterals in Japan and Scotland. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 41–48). Seoul: Seoul National University.

    Google Scholar 

  • Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135–156.

    Article  Google Scholar 

  • Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2014). The mathematical nature of reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51–79.

    Article  Google Scholar 

  • Owens, K. (2004). Improving the teaching and learning of space mathematics. In B. Clarke, D. Clarke, G. Emanuelsson, B. Johansson, D. Lambdin, F. Lester, A. Wallby, & K. Wallby (Eds.), International perspectives on learning and teaching mathematics (pp. 569–584). Gothenburg: Göteborg University National Center for Mathematics Education.

    Google Scholar 

  • Owens, K. (2014). Diversifying our perspectives on mathematics about space and geometry: an ecocultural approach. International Journal of Science and Mathematics Education, 12(4), 941–974.

    Article  Google Scholar 

  • Owens, K. (2015). Visuospatial reasoning: An ecocultural perspective for space, geometry and measurement education. New York: Springer.

    Book  Google Scholar 

  • Owens, K., Cherinda, M., & Jawahir, R. (2015). The importance of an ecocultural perspective for Indigenous and transcultural education. In K. Owens (Ed.), Visuospatial reasoning: An ecocultural perspective for space, geometry and measurement education (pp. 245–273). New York: Springer.

    Google Scholar 

  • Owens, K., & Highfield, K. (2015). Visuospatial reasoning in contexts with digital technology. In K. Owens (Ed.), Visuospatial reasoning (pp. 275–289). Berlin: Springer.

    Google Scholar 

  • Owens, K., McPhail, D., & Reddacliff, C. (2003). Facilitating the teaching of space mathematics: An evaluation. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of 27th annual conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 339–345). Hawaii: International Group for the Psychology of Mathematics Education.

    Google Scholar 

  • Palha, S., Dekker, R., Gravemeijer, K., & Van Hout-Wolters, B. (2013). Developing shift problems to foster geometrical proof and understanding. The Journal of Mathematical Behavior, 32(2), 142–159.

    Article  Google Scholar 

  • Papademetri-Kachrimani, C. (2012). Revisiting van Hiele. For the Learning of Mathematics, 32(3), 2–7.

    Google Scholar 

  • Perry, D. R., & Steck, A. K. (2015). Increasing student engagement, self-efficacy, and meta-cognitive self-regulation in the high school geometry classroom: do iPads help? Computers in the Schools, 32(2), 122–143.

    Article  Google Scholar 

  • Perrin-Glorian, M. -J., Mathé, A. -C., & Leclercq, R. (2013). Comment peut-on penser la continuité de l’enseignement de la géométrie de 6 a 15 ans? Repères-IREM, 90, 5–41.

  • Pimm, D. (1997). Symbols and meanings in school mathematics. London: Routledge.

    Google Scholar 

  • Pinxten, R., & François, K. (2011). Politics in an Indian canyon? Some thoughts on the implications of ethnomathematics. Educational Studies in Mathematics, 78(2), 261–273.

    Article  Google Scholar 

  • Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191–212.

    Article  Google Scholar 

  • Popovic, G. (2012). Who is this trapezoid, anyway? Mathematics Teaching in the Middle School, 18(4), 196–199.

    Article  Google Scholar 

  • Presmeg, N. (2006). Research on visualisation in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 205–304). Rotterdam: Sense Publishers.

    Google Scholar 

  • Psycharis, G., & Kynigos, C. (2009). Normalising geometrical figures: dynamic manipulation and construction of meanings for ratio and proportion. Research in Mathematics Education, 11(2), 149–166.

    Article  Google Scholar 

  • Richard, P. R., Fortuny, J. M., Gagnon, M., Leduc, N., Puertas, E., & Tessier-Baillargeon, M. (2011). Didactic and theoretical-based perspectives in the experimental development of an intelligent tutorial system for the learning of geometry. ZDM—The International Journal on Mathematics Education, 43(3), 425–439.

    Article  Google Scholar 

  • Richter-Gebert, J., & Kortenkamp, U. H. (2012). The Cinderella.2 manual. Working with the interactive geometry software. Berlin: Springer.

    Google Scholar 

  • Rivera, F. (2011). Towards a visually-oriented school mathematics classrooms: Research, theory, practice, and issues. New York, NY: Springer.

    Book  Google Scholar 

  • Rowlands, S. (2010). A pilot study of a cultural-historical approach to teaching geometry. Science and Education, 19(1), 55–73.

    Article  Google Scholar 

  • Rybak, A., & Lénárt, I. (2012). Comparative geometry with geogebra, spherical easel and other didactic tools. GGIJRO, 2(2), 67–76.

    Google Scholar 

  • Sabena, C. (2008). On the semiotics of gestures. In: L. Radford, G. Schumbring, & F. Seeger (Eds.), Semiotics in mathematics education: epistemology, history, classroom, and culture (pp. 19–38). Rottenberg: Sense.

  • Sáenz-Ludlow, A., & Athanasopoulou, A. (2007). Investigating properties of isosceles trapezoids with the GSP: the case of a pre-service teacher. In D. Pugalee, A. Rogerson, & A. Schinck (Eds.), Proceedings of the 9th International Conference: Mathematics Education in a Global Community (pp. 577–582). NC: Chapel Hill.

    Google Scholar 

  • Salinas, T. M., Lynch-Davis, K., Mawhinney, K. J., & Crocker, D. A. (2014). Exploring quadrilaterals to reveal teachers’ use of definitions: results and implications. Australian Senior Mathematics Journal, 28(2), 50–59.

    Google Scholar 

  • Saltire Software (2016). Geometry Expressions (software package).

  • Sarfaty, Y., & Patkin, D. (2013). The ability of second graders to identify solids in different positions and to justify their answer. Pythagoras, 34(1), 1–10.

    Article  Google Scholar 

  • Schellenberg, B. (2010). A proposal for a variation on the axioms of classical geometry. International Journal of Mathematical Education in Science and Technology, 41(3), 311–321.

    Article  Google Scholar 

  • Schimpf, F., & Spannagel, C. (2011). Reducing the graphical user interface of a dynamic geometry system. ZDM—The International Journal on Mathematics Education, 43(3), 389–397.

    Article  Google Scholar 

  • Sears, R., & Chávez, O. (2014). Opportunities to engage with proof: the nature of proof tasks in two geometry textbooks and its influence on enacted lessons. ZDM—The International Journal on Mathematics Education, 46(5), 767–780.

    Article  Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. New York: Cambridge University Press.

    Book  Google Scholar 

  • Shah, P., & Miyake, A. (2005). The Cambridge handbook of visuospatial thinking. New York: Cambridge University Press.

    Book  Google Scholar 

  • Shein, P. P. (2012). Seeing with two eyes: a teacher’s use of gestures in revoicing to engage English language learners in the repair of mathematical errors. Journal for Research in Mathematics Education, 43(2), 182–222.

    Article  Google Scholar 

  • Sinclair, N., & Bruce, C. (2015). New opportunities in geometry education at the primary school. ZDM Mathematics Education, 51(3), 319–329.

  • Sinclair, N., & de Freitas, E. (2014). The haptic nature of gesture: rethinking gesture with multitouch digital technologies. Gesture, 14(3), 351–374.

    Article  Google Scholar 

  • Sinclair, N., de Freitas, E., & Ferrara, F. (2012). Virtual encounters: the murky and furtive world of mathematical inventiveness. ZDM—The International Journal on Mathematics Education, 45(2), 239–252.

    Article  Google Scholar 

  • Sinclair, M., Mamolo, A., & Whiteley, W. (2011). Designing spatial visual tasks for research: the case of the filling task. Educational Studies in Mathematics, 78, 135–163.

    Article  Google Scholar 

  • Sinclair, N., & Moss, J. (2012). The more it changes, the more it becomes the same: the development of the routine of shape identification in dynamic geometry environments. International Journal of Education Research, 51–52, 28–44.

    Article  Google Scholar 

  • Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: the case of dynamic geometry. In Alan Bishop, Ken Clement, Christine Keitel, Jeremy Kilpatrick, & Frederick Leung (Eds.), Third international handbook of mathematics education (pp. 571–596). Berlin: Springer.

    Google Scholar 

  • Smith, J. T. (2010). Definitions and nondefinability in geometry. American Mathematical Monthly, 117(6), 475–489. doi:10.4169/000298910X492781.

  • Spelke, E. S., Gilmore, C. K., & McCarthy, S. (2011). Kindergarten children’s sensitivity to geometry in maps. Developmental Science, 14(4), 809–821.

    Article  Google Scholar 

  • Steenpass, A., & Steinbring, H. (2014). Young students’ subjective interpretations of mathematical diagrams—elements of the theoretical construct ‘‘frame-based interpreting competence’’. ZDM—The International Journal on Mathematics Education, 46(1), 3–14.

    Article  Google Scholar 

  • Stols, G., & Kriek, J. (2011). Why don’t all maths teachers use dynamic geometry software in their classrooms? Australasian Journal of Educational Technology, 27(1), 137–151.

    Article  Google Scholar 

  • Su, W., Wang, P. S., Cai, C., & Li, L. (2014). A touch-operation-based dynamic geometry system: design and implementation. In H. Hong & C. Yap (Eds.), Mathematical software: ICMS 2014 (pp. 235–239). Berlin: Springer.

    Google Scholar 

  • Tanguay, D., & Grenier, D. (2010). Experimentation and proof in a solid geometry teaching situation. For the Learning of Mathematics, 30(3), 36–42.

    Google Scholar 

  • Tartre, L. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21, 216–229.

    Article  Google Scholar 

  • Taylor, H., & Hutton, A. (2013). Think 3d! Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434–455.

    Article  Google Scholar 

  • Tessema, K. A. (2007). The teacher education reform process in Ethiopia: some consequences on educators and its implications. Teaching Education, 18(1), 29–48.

    Article  Google Scholar 

  • Tepylo, D., Moss, J., & Stephenson, C. (2015). A developmental look at a rigosour block play program. Young Children, 70(1), 18-25.

  • Thom, J., & McGarvey, L. (2015). The act and artifact of drawing(s): observing geometric thinking with, in, and through children’s drawings. Mathematics Education, 47(3), 465–481.

    Google Scholar 

  • Trgalova, J., Soury-Lavergne, S., & Jahn, A. P. (2011). Quality assessment process for dynamic geometry resources in Intergeo project. ZDM—The International Journal on Mathematics Education, 43(3), 337–351.

    Article  Google Scholar 

  • Usiskin, Z., Griffin, J., Witonsky, D., & Willmore, E. (2008). The Classification of quadrilaterals: a study of definition. Charlotte: Information Age Publishing.

    Google Scholar 

  • Uttal, D., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013a). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 2, 352–402.

    Article  Google Scholar 

  • Uttal, D., Miller, D., & Newcombe, N. (2013b). Exploring and enhancing spatial thinking: links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373.

    Article  Google Scholar 

  • Van Hiele, P. M. (1986). Structure and insight: a theory of mathematics education. New York: Academic Press.

    Google Scholar 

  • Van Putten, S. (2008). Levels of thought in geometry of pre-service mathematics educators according to the van Hiele Model. Unpublished Master’s thesis, University of Pretoria.

  • Venturini, M. (2015). How teachers think about the role of digital technologies in student assessment in mathematics. Unpublished PhD dissertation. Simon Fraser University, Canada.

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of though in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.

    Article  Google Scholar 

  • Vosniadou, S., & Skopeliti, I. (2014). Conceptual change from the framework theory side of the fence. Science and Education, 23(7), 1427–1445.

    Article  Google Scholar 

  • Wakwinji, I. (2011). Exploring how a workshop approach helps mathematics teachers start to develop technological pedagogical content knowledge. (Masters), University of Amsterdam.

  • Walcott, C., Mohr, D., & Kastberg, S. E. (2009). Making sense of shape: an analysis of children’s written responses. Journal of Mathematical Behavior, 28(1), 30–40.

    Article  Google Scholar 

  • Wang, S., & Kinzel, M. (2014). How do they know it is a parallelogram? Analysing geometric discourse at van Hiele Level 3. Research in Mathematics Education, 16(3), 288–305.

    Article  Google Scholar 

  • Watson, A., Jones, K., & Pratt, D. (2013). Key ideas in teaching mathematics: research-based guidance for ages 9–19. Oxford: Oxford University Press.

    Google Scholar 

  • Yang, J. C., & Chen, S. Y. (2010). Effects of gender differences and spatial abilities within a digital pentominoes game. Computers and Education, 55(3), 1220–1233.

    Article  Google Scholar 

  • Yang, K.-L., & Lin, F.-L. (2008). A model of reading comprehension of geometry proof. Educational Studies in Mathematics, 67(1), 59–76.

    Article  Google Scholar 

  • Yu, P., Barrett, J., & Presmeg, N. (2009). Prototypes and categorical reasoning. In T. V. Craine (Ed.), Understanding geometry for a changing world, seventy-first yearbook of the National Council of Teachers of Mathematics (NCTM) (pp. 91–108). Reston: NCTM.

    Google Scholar 

  • Zalamea, F. (2012). Synthetic philosophy of contemporary mathematics. New York: Sequence Press.

    Google Scholar 

  • Zandieh, M. & Rasmussen, C. (2010). Defining as a mathematical activity: a framework for characterizing progress from informal to more formal ways of reasoning, JMB, 29, 55–75.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sinclair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinclair, N., Bartolini Bussi, M.G., de Villiers, M. et al. Recent research on geometry education: an ICME-13 survey team report. ZDM Mathematics Education 48, 691–719 (2016). https://doi.org/10.1007/s11858-016-0796-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-016-0796-6

Keywords

Navigation