Skip to main content
Log in

Components of Science Teachers’ Professional Competence and Their Orientational Frameworks when Dealing with Uncertain Evidence in Science Teaching

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

The generation of reliable and certain evidence is among the central objectives of the natural sciences. However, in real-world scientific research, dealing with uncertainty is often a necessary part of the establishment of certain knowledge. Therefore, science teaching has to take into consideration the fact that evidence is not only reliable: Whenever science is still in the making, evidence may be temporarily uncertain, varying, and fragile. This study reconstructs aspects of science teachers’ professional competence as well as their orientational frameworks when dealing with uncertain evidence in science teaching. Semi-structured interviews with video vignettes used as interview stimuli were conducted with 26 science teachers. The video vignettes were carefully designed and validated in order to illustrate situations in which uncertain evidence unexpectedly arises during science teaching. The generated data were analyzed based on the documentary method and qualitative data analysis. Results indicate that teachers employ a variety of strategies for dealing with uncertain evidence. Furthermore, our results point to connections between teachers’ instructional strategies and their beliefs about their own and their students’ roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In Germany, a “Gymnasium” offers the final degree (Abitur) after 8 years (grades 5 to 12), while a “Stadtteilschule” includes up to 9 years (grade 5 to 13) and offers lower degrees after grades 9 and 10. Additionally, the public image of “Gymnasium” is more ambitious and challenging in general.

  2. The index “s” is used to distinguish typess of one of the single-dimensional typologies and the index “m” is used to identify typesm of the multi-dimensional typology (cf. step 4).

  3. Names are changed to ensure anonymity.

  4. Examplary statements of interviewees are translated from German. Codes in brackets are used to anonymize the teachers.

References

  • Abd-El Khalick, F. & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.

    Article  Google Scholar 

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22, 2087–2107.

    Article  Google Scholar 

  • Akerson, V. L., Cullen, T. A. & Hanson, D. L. (2009). Fostering a community of practice through a professional development program to improve elementary teachers’ views of nature of science and teaching practice. Journal of Research in Science Teaching, 46(10), 1090–1113.

    Article  Google Scholar 

  • Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.

    Article  Google Scholar 

  • Aufschnaiter, C. V. & Blömeke, S. (2010). Professionelle Kompetenz von (angehenden) Lehrkräften erfassen - Desiderata [Professional competence of (prospective) teachers capture - Desiderata]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 303–309.

    Google Scholar 

  • Baumert, J. & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften [Keywords: Professional competence of teachers]. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.

    Article  Google Scholar 

  • Blömeke, S., Kaiser, G. & Lehmann, R. (2008). Professionelle Kompetenz angehender Lehrerinnen und Lehrer [Professional competence of prospective teachers]. Münster, Germany: Waxmann.

  • Blömeke, S., Kaiser, G. & Lehmann, R. (2010). TEDS-M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich [Professional competence and learning opportunities prospective mathematics teachers for secondary education in an international comparison]. Münster, Germany: Waxmann.

  • Bohnsack, R., Pfaff, N. & Weller, W. (2010). Reconstructive research and documentary method in Brazilian and German educational science—An introduction. In R. Bohnsack, N. Pfaff & W. Weller (Eds.), Qualitative analysis and documentary method in international educational research (pp. 7–40). Opladen, Germany: Budrich.

    Google Scholar 

  • Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.

    Article  Google Scholar 

  • Bourdieu, P. (1998). Practical reason: On the theory of action. Stanford, CA: Polity Press.

    Google Scholar 

  • Carey, S. & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251.

    Article  Google Scholar 

  • Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623–654.

    Article  Google Scholar 

  • Chinn, C. A. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.

    Article  Google Scholar 

  • Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science Education, 15, 463–494.

    Article  Google Scholar 

  • Collins, H. M. (1987). Certainty and the public understanding of science: Science on television. Social Studies of Science, 17(4), 689–713.

    Article  Google Scholar 

  • Duschl, R. & Grandy, R. (2013). Two views about explicitly teaching nature of science. Science & Education, 22, 2109–2139.

    Article  Google Scholar 

  • Ford, M. J. & Wargo, B. M. (2012). Dialogic framing of scientific content for conceptual and epistemic understanding. Science Education, 96(3), 369–391.

    Article  Google Scholar 

  • Grandy, R. & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: Analysis of a conference. Science & Education, 16(2), 141–166.

    Article  Google Scholar 

  • Guerra-Ramos, M. T. (2012). Teachers’ ideas about the nature of science: A critical analysis of research approaches and their contribution to pedagogical practice. Science & Education, 21(5), 631–655.

    Article  Google Scholar 

  • Gyllenpalm, J. & Wickman, P.-O. (2011). “Experiments” and the inquiry emphasis conflation in science teacher education. Science Education, 95(5), 908–926.

    Article  Google Scholar 

  • Heering, P. & Höttecke, D. (2014). Historical-investigative approaches in science teaching. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1473–1502). Dordrecht, Netherlands: Springer.

    Chapter  Google Scholar 

  • Henke, A. & Höttecke, D. (2013). Entwicklung von Schülervorstellungen zur Natur der Naturwissenschaften im Rahmen forschenden Lernens und historischer Fallstudien [Development of students’ conceptions of nature of science research-based learning in the context of historical and case studies]. In S. Bernholt (Ed.), Zur Didaktik der Chemie und Physik, GDCP-Jahrestagung in Hannover 2012 (pp. 398–400). Kiel, Germany: IPN.

  • Henke, A. & Höttecke, D. (2014). Physics teachers’ challenges in using history and philosophy of science in teaching. Science & Education. Advance online publication. doi:10.1007/s11191-014-9737-3.

  • Hodson, D. (1993). Philosophic stance of secondary school science teachers, curriculum experiences, and children’s understanding of science: Some preliminary findings. Interchange, 24, 41–52.

    Article  Google Scholar 

  • Höttecke, D. (2013, June). A sketch of the problem of authentic inquiry-based learning form a history of science perspective. Paper presented at the Twelfth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Pittsburgh, PA.

  • Höttecke, D., Henke, A. & Rieß, F. (2012). Implementing history and philosophy in science teaching—strategies, methods, results and experiences from the European Project HIPST. Science & Education, 21(9), 1233–1261.

    Article  Google Scholar 

  • Höttecke, D. & Rieß, F. (2007, June). How do physics teacher students understand the nature of science? An explorative study of a well informed investigational group. Paper presented at the Ninth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Calgary, Canada.

  • Höttecke, D. & Silva, C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20(3), 293–316.

    Article  Google Scholar 

  • Jones, M. G. & Carter, G. (2007). Science teacher attitudes and beliefs. In K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1067–1104). New York, NY: Routledge.

    Google Scholar 

  • Kang, N.-H. & Wallace, C. S. (2005). Secondary science teachers’ use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 141–165.

    Article  Google Scholar 

  • Kelle, U. & Kluge, S. (2010). Vom Einzelfall zum Typus [The individual case to the type]. Opladen, Germany: Lesek + Budrich.

  • Kelly, G. J., Brown, C. & Crawford, T. (2000). Experiments, contingencies, and curriculum: Providing opportunities for learning through improvisation in science teaching. Science Education, 84(5), 624–657.

    Article  Google Scholar 

  • Kleickmann, T., Großschedl, J., Harms, U., Heinze, A., Herzog, S., Hohenstein, F., ... Zimmermann, F. (2014). Professionswissen von Lehramtsstudierenden der mathematisch-naturwissenschaftlichen Fächer – Testentwicklung im Rahmen des Projekts KiL [Professional knowledge of student teachers of mathematics and science subjects - test development within the project KiL]. Unterrichtswissenschaft, 42(3), 280–288.

  • Kolstø, S. D. (2001). ‘To trust or not to trust, …’—pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23(9), 877–901.

    Article  Google Scholar 

  • Krüger, J., Ruhrig, J. & Höttecke, D. (2013). Lehrerperspektiven auf unsichere Evidenz II: Ergebnisse einer Gruppendiskussionsstudie [Teacher perspectives on uncertain evidence II: results of a focus group study]. In S. Bernholt (Ed.), Zur Didaktik der Chemie und Physik, GDCP-Jahrestagung in Hannover 2012 (pp. 728–790). Kiel, Germany: IPN.

  • Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S. & Neubrand, M. (Eds.). (2011). Professionelle Kompetenz von Lehrkräften: Ergebnisse des Forschungsprogramms COACTIV [Professional competence of teachers: results of the research program COACTIV]. Münster, Germany: Waxmann.

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, England: Harvard University Press.

    Google Scholar 

  • Lederman, N. G. (1999). Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916–929.

    Article  Google Scholar 

  • Lederman, N. G. & Abd-El-Khalick, F. (1998). Avoiding de-natured science: Activities that promote understandings of the nature of science. In W. McComas (Ed.), The nature of science in science education. Rationales and strategies (pp. 83–126). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lederman, J. S. & Lederman, N. G. (2012). Nature of scientific knowledge and scientific inquiry. In B. J. Fraser, K. G. Tobin & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 335–359). Dordrecht, Netherlands: Springer.

    Chapter  Google Scholar 

  • Lederman, N. G. & Zeidler, D. L. (1987). Science teachers’ conceptions of the nature of science: Do they really influence teaching behaviour? Science Education, 71(5), 721–734.

    Article  Google Scholar 

  • Lindmeier, A. (2011). Modeling and measuring knowledge and competencies of teachers. A threefold domain-specific structure model for mathematics. Münster, Germany: Waxmann.

    Google Scholar 

  • Magnusson, J., Krajcik, J. & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht, Germany: Kluwer.

    Google Scholar 

  • Mannheim, K., Kettler, D., Meja, V. & Stehr, N. (Eds.). (1980). Strukturen des Denkens [Structures of thought]. Frankfurt am Main, Germany: Suhrkamp.

  • Mayring, P. (2010). Qualitative Inhaltsanalyse: Grundlagen und Techniken [Qualitative Content Analysis: Principles and Techniques]. Weinheim, Germany: Beltz.

  • Müürsepp, P. (2006). The uncertainty of scientific knowledge. In M. Rahnfeld (Ed.), Gibt es sicheres Wissen? (pp. 81–90). Leipzig, Germany: Leipziger Uni-Verlag.

  • Nott, M. & Wellington, J. (1996). When the black box springs open: Practical work in schools and the nature of science. International Journal of Science Education, 18(7), 807–818.

    Article  Google Scholar 

  • Oliveira, A. W., Akerson, V. L., Colak, H., Pongsanon, K. & Genel, A. (2012). The implicit communication of nature of science and epistemology during inquiry discussion. Science Education, 96(4), 652–684.

    Article  Google Scholar 

  • Oreskes, N. & Conway, E. M. (2010). Merchants of doubt. How a handful of scientists obscured the truth on issues from tobacco smoke to global warming. New York, NY: Bloomsbury Press.

    Google Scholar 

  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Revue of Educational Research, 62(3), 307–332.

    Article  Google Scholar 

  • Pickering, A. (1993). Living in the material world: On realism and experimental practice. In D. Gooding, T. Pinch & S. Schaffer (Eds.), The uses of experiment. Studies in the natural sciences (pp. 275–297). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Ledermann (Eds.), Handbook of research on science education (pp. 729–780). Mahwa, India: Erlbaum.

    Google Scholar 

  • Ruhrig, J. & Höttecke, D. (2013, June). Science teachers’ practical epistemologies. Reconstructions of science teachers’ perspectives on uncertain evidence. Paper presented at the Twelfth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Pittsburgh, PA.

  • Ruhrig, J. & Höttecke, D. (2015). Was, wenn das Experiment nicht klappt? Unsichere Evidenz als Lerngelegenheit nutzen [What to do, when practical work goes wrong? Uses of uncertain evidence for learning]. Unterricht Physik, 144, 32–35.

    Google Scholar 

  • Ruhrig, J., Ohlsen, M. & Höttecke, D. (2013). Lehrerperspektiven auf unsichere Evidenz I: Projektziele, -design und Erhebungsinstrumente [Teacher perspectives on uncertain evidence I: Objectives, design and survey instruments]. In S. Bernholt (Ed.), Zur Didaktik der Chemie und Physik, GDCP-Jahrestagung in Hannover 2012 (pp. 725–727). Kiel, Germany: IPN.

  • Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4(1), 1–94.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15(2), 4–14.

    Article  Google Scholar 

  • Star, S. L. (1985). Scientific work and uncertainty. Social Studies of Science, 15, 391–427.

    Article  Google Scholar 

  • Törner, G., Polka, K. & Wüllner, S. (2005). Die fachmathematische Struktur als “Auffangnetz” - Analyse einer Unterrichtssituation im Lichte von Schoenfelds Theorie “Teaching-In-Context”. In C. Kaune, I. Schwank & J. Sjuts, (Eds.), Mathematikdidaktik im Wissenschaftsgefüge: Zum Verstehen und Unterrichten mathematischen Denkens. Bd.2. Osnabrück, Germany: Forschungsinst. F. Mathem.

  • von Driel, J. H., Verloop, N. & de Vos, W. (1998). Developing science teacher’s pedagogical content knowledge. Journal of Research in Science Teaching, 36(6), 673–695.

    Article  Google Scholar 

  • von Someren, M. W., Barnard, Y. F. & Sandberg, J. A. C. (1994). The think aloud method. London, England: Academic.

    Google Scholar 

  • Wahbeh, N. & Abd-El-Khalick, F. (2014). Revisiting the translation of nature of science understanding into instructional practice: Teachers’ nature of science pedagogical content knowledge. International Journal of Science Education, 36(3), 425–466.

    Article  Google Scholar 

  • Weinert, F. E. (2001). Leistungsmessung in Schulen. Weinheim, Germany: Beltz.

    Google Scholar 

  • Ziman, J. (2000). Real science. What it is, and what it means. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ruhrig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhrig, J., Höttecke, D. Components of Science Teachers’ Professional Competence and Their Orientational Frameworks when Dealing with Uncertain Evidence in Science Teaching. Int J of Sci and Math Educ 13, 447–465 (2015). https://doi.org/10.1007/s10763-015-9628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-015-9628-3

Keywords

Navigation