Skip to main content

Signalomics: Diversity and Methods of Analysis of Systemic Signals in Plants

  • Chapter
  • First Online:

Abstract

We provide a brief definition and history of signals, pointing out how differences in body plan between plants and animals require fundamentally different signaling mechanisms, and then list the diversity of chemical and physical signals along with their pathways of transmission, providing details on molecular signals and focusing on the phloem and xylem as being the main conduits for (rapid) systemic signaling. The two major electrical (action potentials and variation potentials) as well as hydraulic signals are then described. The latter part of the chapter deals with methods of analysis of molecular signals, including accessing the phloem and identifying the array of gene products transported therein. A description is provided of the modern methods used in metabolomics and phenotyping to analyze the metabolic consequences of signal action. Conventional techniques for analyzing electrical and hydraulic signals and their ionic components using electrodes are then furnished. Finally we describe novel techniques developed recently in the animal field using fluorescence to monitor real-time changes in membrane potential, which could be adapted for plants to open up new vistas in our understanding of electrical signals in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA(-GE):

Abscisic acid-(glucose-ester conjugate)

CBL:

Calcineurin B-like

CIPK:

CBL-interacting protein kinase

CML:

Calmodulin/calmodulin-like protein

eATP:

Extracellular ATP

DAG:

Diacylglycerol

FRET:

Fluorescence (or Förster) resonance energy transfer

FTIR:

Fourier transform infrared spectroscopy

GC-MS:

Gas chromatography-mass spectrometry

PLAFP:

Phloem lipid-associated family protein

PI:

Protease inhibitor

PIIF:

Protease inhibitor-inducing factor

RALF:

Rapid alkalinization factor

ROS:

Reactive oxygen species

SE:

Sieve element

SP:

System potential

VP:

Variation potential

VSFP:

Voltage-sensitive fluorescent protein

VOCs:

Volatile organic compounds

VT:

Voltage transient

References

  • Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    CAS  PubMed  Google Scholar 

  • Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49(5):767–790

    CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffman T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    CAS  PubMed  Google Scholar 

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    CAS  PubMed  Google Scholar 

  • Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 14:1649–1662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ammann D (1986) Ion-selective microelectrodes, principles, design and application. Springer, Berlin/Heidelberg

    Google Scholar 

  • Anten NPR, Alcalá-Herrera R, Schieving F, Onoda Y (2010) Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol 188:554–564

    PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172(5):876–887

    CAS  Google Scholar 

  • Arimura GI, Ozawa R, Maffei ME (2011) Recent advances in plant early signaling in response to herbivory. Int J Mol Sci 12:3723–3739

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atkins CA, Smith PMC (2007) Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol 144(2):550–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9(1):484–505

    CAS  PubMed  Google Scholar 

  • Banerjee AK, Chatterjee M, Yu Y, Suh SG, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long distance signaling pathway. Plant Cell 18:3443–3457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Batailler B, Lemaître T, Viulaine F, Sanchez C, Renard D, Cayla T, Beneteau J, Dinant S (2012) Soluble and filamentous proteins in Arabidopsis sieve elements. Plant Cell Environ 35:1258–1273

    CAS  PubMed  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820(8):1283–1293

    PubMed  Google Scholar 

  • Baydoun EA, Fry SC (1985) The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta 165:269–276

    CAS  PubMed  Google Scholar 

  • Beaudoin E (2011) The language of nitric oxide signalling. Plant Biol 13(2):233–242

    Google Scholar 

  • Benning F, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of phloem-mediated long-distance lipid signaling in plants. Front Plant Sci 3:53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berthold AA (1849) Transportation der Hoden. Arch Anat Physiol Wiss Med 16:42–46

    Google Scholar 

  • Beuve N, Rispail N, Laine P, Cliquet JB, Ourry A, Le Deunff E (2004) Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27:1035–1046

    CAS  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7(1):e30515. doi:10.1371/journal.pone.0030515

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8(5):494–500

    CAS  PubMed  Google Scholar 

  • Blatt MR (1991) Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol 124:95–112

    CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    CAS  PubMed  Google Scholar 

  • Bloemendal S, Kück U (2013) Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 100(1):3–19

    CAS  PubMed  Google Scholar 

  • Bonnin P, Gendraud M, Desbiez MO (1989) Étude cinetique de l’evolution des pH cytoplasmique et vacuolaire après administration de piqûres sur les cotylédons de Bidens pilosa L. C R Acad Sci Paris 309:459–464

    Google Scholar 

  • Boss WF, Im YJ (2012) Phosphoinositide signaling. Annu Rev Plant Biol 63:409–429

    CAS  PubMed  Google Scholar 

  • Bozorov TA, Baldwin TI, Kim SG (2012) Identification and profiling of miRNAs during herbivory reveals jasmonate-dependent and -independent patterns of accumulation in Nicotiana attenuata. BMC Plant Biol 12:209. doi:10.1186/1471-2229-12-209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1):98–111

    CAS  PubMed  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53(5):739–749

    CAS  PubMed  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64. doi:10.1186/1471-2229-10-64

    PubMed Central  PubMed  Google Scholar 

  • Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 81(6):2135–2143

    PubMed  Google Scholar 

  • Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM (2009) Plant peptides in signaling: looking for new partners. Trends Plant Sci 14(5):255–263

    CAS  PubMed  Google Scholar 

  • Camejo D, Martí MC, Olmos E, Torres W, Sevilla F, Jiménez A (2012) Oligogalacturonides stimulate antioxidant system in alfalfa roots. Biol Plant 56(3):537–544

    CAS  Google Scholar 

  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6(1):13–18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Capoen W, Sun J, Wysham D, Oteguib MS, Venkateshwaranc M, Hirscha S, Miwaa H, Downiea JA, Morrisa RJ, Anéc JM, Oldroyda GED (2011) Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci U S A 108:14348–14353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguéz-Léon J, Wu HM, Cheung AY, Feijó JA (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48(2):123–149

    CAS  Google Scholar 

  • Charmont S, Jamet E, Pont-Lezica R, Canut H (2005) Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66:453–461

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Tiana L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China C Life Sci 49(1):1–11

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:1–7

    Google Scholar 

  • Chivasa S, Slabas AR (2012) Plant extracellular ATP signaling: new insight from proteomics. Mol Biosyst 8:445–452

    CAS  PubMed  Google Scholar 

  • Cho M, Lee OR, Ganguly A, Cho HT (2007) Auxin-signaling: short and long. J Plant Biol 50(2):79–89

    CAS  Google Scholar 

  • Choi J, Choi D, Lee S, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16(7):388–394

    CAS  PubMed  Google Scholar 

  • Choi WG, Swanson SJ, Gilroy S (2012) High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant J 70:118–128

    CAS  PubMed  Google Scholar 

  • Chu CR, Hsieh CI, Wu SY, Phillips NG (2009) Transient response of sap flow to wind speed. J Exp Bot 60(1):249–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284

    CAS  PubMed  Google Scholar 

  • Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2010) Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Lo Schiavo F (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca(2 + )-dependent scavenging system. Plant J 62:760–772

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darwin C (1881) The power of movement in plants. John Murray, London

    Google Scholar 

  • Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM (2004) Sensing and signaling during plant flooding. Plant Physiol Biochem 42:273–282

    CAS  PubMed  Google Scholar 

  • Davies E (1987) Plant responses to wounding. In: Davies DD (ed) The biochemistry of plants, vol 12. Academic, New York

    Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161(3):607–610

    Google Scholar 

  • Davies E (2006) Electrical signals in plants: facts and hypotheses. In: Volkov A (ed) Plant electrophysiology – theory and methods. Springer, Berlin/Heidelberg

    Google Scholar 

  • Davies E, Schuster A (1981) Intercellular communication in plants: evidence for a rapidly generated, bidirectionally transmitted wound signal. Proc Natl Acad Sci USA 78(4):2422–2426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants, neuronal aspects of plant life. Springer, Berlin/Heidelberg

    Google Scholar 

  • Davies E, Ramaiah KVA, Abe S (1986) Wounding inhibits protein synthesis yet stimulates polysome formation in aged, excised pea epicotyls. Plant Cell Physiol 27:1377–1386

    CAS  Google Scholar 

  • Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? In: Penel C, Greppin H (eds) Plant signalling, plasma membrane and change of state. Université de Genève, Geneva

    Google Scholar 

  • Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BV, Davies JM (2003) Is ATP a signaling agent in plants? Plant Physiol 133:456–461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373

    CAS  PubMed  Google Scholar 

  • Desbiez MO, Kergosien Y, Champagnat P, Thellier M (1984) Memorization and delayed expression of regulatory messages in plants. Planta 160:392–399

    CAS  PubMed  Google Scholar 

  • Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51:937–944

    CAS  PubMed  Google Scholar 

  • Dinant S, Kehr JS (2013) Sampling and analysis of phloem sap. In: Maathuis FJM (ed) Plant mineral nutrients: methods and protocols, methods in molecular biology. Humana Press, New York

    Google Scholar 

  • Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319

    CAS  PubMed  Google Scholar 

  • Dinant S, Suárez-López P (2012) Multitude of long-distance signal molecules acting via phloem. In: Witzany G, Baluška F (eds) Biocommunication of plants. Signaling and communication in plants. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107(26):12046–12051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    CAS  PubMed  Google Scholar 

  • Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J (2006) A phloem-enriched cDNA library from Ricinus: insights into phloem function. J Exp Bot 57:3183–3193

    CAS  PubMed  Google Scholar 

  • Dong W, Lv H, Xia G, Wang M (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 7(4):472–475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dorn A, Weisenseel MH (1982) Advances in vibrating probe techniques. Protoplasma 113:89–96

    Google Scholar 

  • Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV, Gleba YY (2012) Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog 8(4):e1002640. doi:10.1371/journal.ppat.1002640

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24(4):285–294

    CAS  Google Scholar 

  • Dziubinska H, Trebacz K, Zawadzki T (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol Plant 75:417–423

    Google Scholar 

  • Ebert B, Zöller D, Erban A, Fehrle I, Hartmann J, Nieh A, Kopka J, Fisahn J (2010) Metabolic profiling of Arabidopsis thaliana epidermal cells. J Exp Bot 61(5):1321–1335

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst AM, Jekat SB, Zielonka S, Müllera B, Neumann U, Rüping B, Twymand RM, Krzyzaneke V, Prüfer D, Noll GA (2012) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc Natl Acad Sci USA 109(28):E1980–E1989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Etzler ME, Esko JD (2009) Free glycans as signaling molecules. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63(9):3367–3377

    CAS  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng J, Liu X, Lai L, Chen J (2011) Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections. Acta Biochim Biophys Sin 43:258–266

    CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    CAS  PubMed  Google Scholar 

  • Filek M, Koscielniak J (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. minor). Plant Sci 123:39–46

    CAS  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Pena-Cortes H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    CAS  PubMed  Google Scholar 

  • Forde BG (2002) The role of long distance signaling in plant responses to nitrate and other nutrients. J Exp Bot 53:39–43

    CAS  PubMed  Google Scholar 

  • Foresi NP, Laxalt AM, Tonón CV, Casalongué CA, Lamattina L (2007) Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fromm J, Eschrich W (1988a) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled photoassimilates. Trees 2:7–17

    Google Scholar 

  • Fromm J, Eschrich W (1988b) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. II. Energesis and transmission of seismic stimulations. Trees 2:18–24

    Google Scholar 

  • Fromm J, Eschrich W (1988c) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. III. Displacement of ions during seismonastic leaf movements. Trees 2:65–72

    Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    CAS  PubMed  Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signaling via volatiles overcomes vascular constraints on systemic signaling and primes responses against herbivores. Ecol Lett 10:490–498

    PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Why do distance limitations exist on plant-plant signaling via airborne volatiles? Plant Signal Behav 3(7):466–468

    PubMed Central  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    CAS  PubMed  Google Scholar 

  • Fukuda H, Higashiyama T (2011) Diverse functions of plant peptides: entering a new phase. Plant Cell Physiol 52(1):1–4

    CAS  PubMed  Google Scholar 

  • Fukumorita T, Chino M (1982) Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol 23(2):273–283

    CAS  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    CAS  PubMed  Google Scholar 

  • Galvani L (1791) De Viribus Electricitatis in Motu Musculari Commentarius. Academy of Science, Bologna

    Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pHand[Ca2 + ] indicator sunveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    CAS  PubMed  Google Scholar 

  • Gillaspy GE (2011) The cellular language of myo-inositol signaling. New Phytol 192(4):823–839

    CAS  PubMed  Google Scholar 

  • Gomes de Oliveira Dal’Molin C, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    Google Scholar 

  • Goodger JQ, Schachtman DP (2010) Re-examining the role of ABA as the primary long-distance signal produced by water-stressed roots. Plant Signal Behav 5(10):1298–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84

    PubMed  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    CAS  PubMed  Google Scholar 

  • Grewe BF, Langer D, Kaspar H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405

    CAS  PubMed  Google Scholar 

  • Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63(10):3603–3616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17(3):172–179

    CAS  PubMed  Google Scholar 

  • Hafke JB, van Bel AJE (2013) Cellular basis of electrical potential waves along the phloem and impact of coincident Ca2+ fluxes. In: Thompson GA, van Bel AJE (eds) Phloem: molecular cell biology, systemic communication, biotic interactions. Wiley-Blackwell, Ames

    Google Scholar 

  • Hallé F (1999) Voyage au pays de la forme. Éloge de la plante. Pour une nouvelle biologie. Seuil, Paris

    Google Scholar 

  • Hammond JP, White PJ (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156:1033–1040

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hannapel DJ (2010) A model system of development regulated by the long-distance transport of mRNA. J Integr Plant Biol 52(1):40–52

    CAS  PubMed  Google Scholar 

  • Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL (2012) Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species. Mol Plant 5(4):852–864

    CAS  PubMed  Google Scholar 

  • Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F (2011) HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform 12:148. doi:10.1186/1471-2105-12-148

    Google Scholar 

  • Haseloff J (1998) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    Google Scholar 

  • Hauvermale AL, Ariizumi T, Steber CM (2012) Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol 160(1):83–92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayata Q, Hayata S, Irfana M, Ahmadb A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68(1):14–25

    Google Scholar 

  • Hayama T, Shimmen T, Tazawa M (1979) Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in Characeae internodal cells. Protoplasma 99:305–321

    Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of Gibberellic acid-insensitive RNA regulates leaf development. Plant J 42:49–68

    CAS  PubMed  Google Scholar 

  • Heil M, Karban R (2009) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25(3):137–144

    Google Scholar 

  • Heil M, Ton J (2008) Long-distance signaling in plant defense. Trends Plant Sci 13:264–272

    CAS  PubMed  Google Scholar 

  • Hetherington AM (1998) Plant physiology: spreading a drought warning. Curr Biol 8(25):R911–R913

    CAS  PubMed  Google Scholar 

  • Hlaváčková V, Nauš J (2007) Chemical signal as a rapid long-distance information messenger after local wounding of a plant? Plant Signal Behav 2(2):103–105

    PubMed Central  PubMed  Google Scholar 

  • Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultra-sensitive Ca2+ indicators Cameleon-Nano. Nat Methods 7:729–732

    CAS  PubMed  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    CAS  PubMed  Google Scholar 

  • Iwai H, Usui M, Hoshino H, Kamada H, Matsunaga T, Kakegawa K, Ishii T, Satoh S (2003) Analysis of sugars in squash xylem sap. Plant Cell Physiol 44(6):582–587

    CAS  PubMed  Google Scholar 

  • Iwano M, Shiba H, Miwa T, Che FS, Takayama S, Nagai T, Miyawaki A, Isogai A (2004) Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–3571

    Google Scholar 

  • Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson MB (2002) Long distance signaling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    CAS  PubMed  Google Scholar 

  • Jeannette E, Paradis S, Zalejski C (2010) Diacylglycerol pyrophosphate, a novel plant signaling lipid. In: Munnik T (ed) Lipid signal in plants. Springer, Berlin/Heidelberg

    Google Scholar 

  • Jeter C, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jia W, Zhang J (2008) Stomatal movements and long-distance signaling in plants. Plant Signal Behav 3(10):772–777

    PubMed Central  PubMed  Google Scholar 

  • Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ, Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang F, Hartung W (2008) Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59(1):37–43

    CAS  PubMed  Google Scholar 

  • Johnson HE, Broadhurst D, Goodacrev R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62:919–928

    CAS  PubMed  Google Scholar 

  • Juna JH, Fiumea E, Fletchera JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755

    Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5(3):233–238

    PubMed Central  PubMed  Google Scholar 

  • Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57:767–774

    CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59(1):85–92

    CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A, Giavalisco P (2005) Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol 5:11. doi:10.1186/1471-2229-5-11

    PubMed Central  PubMed  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    CAS  PubMed  Google Scholar 

  • Kim SY, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142:984–992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A 105:9823–9828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    CAS  Google Scholar 

  • Köckenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E, Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201:53–63

    Google Scholar 

  • Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE (2011) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods 9:91–95

    Google Scholar 

  • Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2011) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2+) dynamics. Plant J 69:181–192

    PubMed  Google Scholar 

  • Krishnan HB, Natarajan SS, Bennett JO, Sicher RC (2011) Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max). Planta 233:921–931

    CAS  PubMed  Google Scholar 

  • Kruger NJ, Ratcliffe RG (2012) Pathways and fluxes: exploring the plant metabolic network. J Exp Bot 63(6):243–2246

    Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Lida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18(4):227–233

    CAS  PubMed  Google Scholar 

  • Lake JA, Woodward FI, Quick WP (2002) Long-distance CO2 signaling in plants. J Exp Bot 53:183–193

    CAS  PubMed  Google Scholar 

  • Lalonde S, Boles K, Hellmann H, Barker L, Patrick JW, Frommer WB, Warda JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost, Scarborough

    Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    CAS  PubMed  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JY, Cui W (2009) Non-cell autonomous RNA trafficking and long-distance signaling. J Plant Biol 52:10–18

    CAS  Google Scholar 

  • Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576

    CAS  Google Scholar 

  • Liu TY, Chang CY, Chiou TJ (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12(3):312–319

    CAS  PubMed  Google Scholar 

  • Liu PP, von Dahl CC, Klessig DF (2011) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Llaneras F, Picó J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105(1):1–11

    CAS  PubMed  Google Scholar 

  • Looger LJ (2012) Running in reverse: rhodopsins sense voltage. Nat Methods 9:143–144

    Google Scholar 

  • López-Gresa MP, Lisón P, Kim HK, Choi YH, Verpoorte R, Rodrigo I, Conejero V, Bellés JM (2012) Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. J Plant Physiol 169:1586–1596

    PubMed  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maleck K, Dietrich RA (1999) Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci 4(6):215–219

    PubMed  Google Scholar 

  • Malladi M, Burns JK (2007) Communication by plant growth regulators in roots and shoots of horticultural crops. Hortic Sci 42(5):1113–1117

    CAS  Google Scholar 

  • Malone M (1993) Hydraulic signals. Philos Trans R Soc Lond B 341:33–39

    Google Scholar 

  • Malone M, Alarcon JJ, Palumbo L (1994) An hydraulic interpretation of rapid, long-distance wound signaling in the tomato. Planta 193:181–185

    CAS  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martína JA, Sollab A, Coimbrac MA, Gila L (2005) Metabolic distinction of Ulmus minor xylem tissues after inoculation with Ophiostoma novo-ulmi. Phytochemistry 66(20):2458–2467

    Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674

    CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Shinohara H, Ogawa M (2006) Identification and functional characterization of phytosulfokine receptor using a ligand-based approach. Chem Rec 6(6):356–364

    CAS  PubMed  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    CAS  PubMed  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    CAS  PubMed  Google Scholar 

  • Michard E, Dias P, Feijo JA (2008) A temporal and spatial analysis of extracellular flux and free cytosolic concentration of calcium and protons in growing pollen tubes of tobacco. Sex Plant Reprod 21:169–181

    CAS  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437

    CAS  PubMed  Google Scholar 

  • Migicovsky Z, Kovalchuk I (2013) Changes to DNA methylation and homologous recombination frequency in the progeny of stressed plants. Biochem Cell Biol 91(1):1–5

    CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45. doi:10.1126/scisignal.2000448

    PubMed  Google Scholar 

  • Mintz-Orona S, Meira S, Malitskya S, Ruppin E, Aharonia A, Shlomid T (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci USA 109(1):339–344

    Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:1–8

    Google Scholar 

  • Mittler R, Vanderauwera S, Nobuhiro Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    CAS  PubMed  Google Scholar 

  • Miwa H, Sun J, Oldroyd GE, Downie JA (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894

    CAS  PubMed  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G (2010) NO says more than ‘YES’ to salt tolerance. Salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav 5(3):209–212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molders W, Buchala A, Metraux JP (1996) Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol 112:787–792

    PubMed Central  PubMed  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    CAS  PubMed  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    CAS  PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci U S A 104:20996–21001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechano-sensing in Arabidopsis roots. Plant Cell 21:2341–2356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monshausen GB, Messerli MA, Gilroy S (2008) Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of arabidopsis. Plant Physiol 147:1690–1698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–318

    CAS  PubMed  Google Scholar 

  • Moseyko N, Feldman LJ (2001) Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–563

    CAS  PubMed  Google Scholar 

  • Motose H, Iwamoto K, Endo S, Demura T, Sakagami Y, Matsubayashi Y, Moore KL, Fukuda H (2009) Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of Zinnia mesophyll cells into tracheary elements. Plant Physiol 150(1):437–447

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mullendorea DL, Windt CW, Van Asc H, Knoblaucha M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell 22:579–593

    Google Scholar 

  • Murphy E, Smith E, De Smet I (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24(8):3198–3217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep. doi:10.1007/s00299-013-1418-1

    Google Scholar 

  • Narváez-Vásquez J, Orozco-Cárdenas JM, Ryan CA (1994) A sulfhydryl reagent modulates systemic signaling for wound-induced and systemin-induced proteinase inhibitor synthesis. Plant Physiol 105:725–730

    PubMed Central  PubMed  Google Scholar 

  • Neumann PM (2007) Evidence for long-distance xylem transport of signal peptide activity from tomato roots. J Exp Bot 58(8):2217–2223

    CAS  PubMed  Google Scholar 

  • Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol 63:663–706

    CAS  PubMed  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53(5):731–738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    CAS  PubMed  Google Scholar 

  • Parker JE (2009) The quest for long-distance signals in plant systemic immunity. Sci Signal 2(70):pe31. doi:10.1126/scisignal.270pe31

    PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Manic B, Ton J, Flors V (2012) Primed plants do not forget. Environ Exp Bot. doi:10.1016/j.envexpbot.2012.02.013

    Google Scholar 

  • Pastrana E (2012) Light based electrophysiology: genetically-encoded voltage sensors are finally measuring up. Nat Methods 9:38. doi:10.1038/nmeth.1825

    CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897

    CAS  PubMed  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peña-Cortés H, Willmitzer L, Sanchez-Serrano JJ (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3(9):963–972

    PubMed Central  PubMed  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Google Scholar 

  • Qutob D, Chapman BP, Gijzen M (2013) Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nat Commun 4:1349. doi:10.1038/ncomms2354

    PubMed Central  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15(7):395–401

    CAS  PubMed  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ricca U (1916) Soluzione di un problema di fisiologia: la propagazione di stimolo nella “Mimosa”. Nuovo G Bot Ital 23:51–170

    Google Scholar 

  • Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P (2008) The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. Plant Physiol 147:1092–1109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rochefort NI, Konnerth A (2008) Genetically encoded Ca2+ sensors come of age. Nat Methods 5:761–762

    CAS  PubMed  Google Scholar 

  • Rocher F, Chollet JF, Jousse C, Bonnemain JL (2006) Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiol 141:1684–1693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PMC (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). PMC Plant Biol 11:36. doi:10.1186/1471-2229-11-36

    CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    CAS  PubMed  Google Scholar 

  • Roos W, Viehweger K, Dordschbal B, Schumann B, Evers S, Steighardt J, Schwartze W (2006) Intracellular pH signals in the induction of secondary pathways – the case of Eschscholzia californica. J Plant Physiol 163(3):369–381

    CAS  PubMed  Google Scholar 

  • Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H (2010) A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiol Plant 138:493–502

    CAS  PubMed  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    CAS  PubMed  Google Scholar 

  • Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19(6):527–536

    PubMed  Google Scholar 

  • Schallau K, Junker BH (2010) Simulating plant metabolic pathways with enzyme-kinetic models. Plant Physiol 152(4):1763–1771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    CAS  PubMed  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    PubMed  Google Scholar 

  • Schulte A, Lorenzen I, Bottcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7

    PubMed Central  PubMed  Google Scholar 

  • Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231:299–316

    CAS  PubMed  Google Scholar 

  • Schwarzlander M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475

    PubMed  Google Scholar 

  • Shiina T, Tazawa M (1986) Action potential in Luffa cylindrica and its effects on elongation growth. Plant Cell Physiol 27:1081–1089

    Google Scholar 

  • Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20:49–73

    CAS  PubMed  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Annu Rev Plant Physiol 20:165–184

    CAS  Google Scholar 

  • Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG (2009) A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol 151:1197–1206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinyukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plants. Nature 215:1278–1280

    Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30. doi:10.3389/fpls.2013.00030

    PubMed Central  PubMed  Google Scholar 

  • Shelp BJ (2012) Does long-distance GABA signaling via the phloem really occur? Botany 90:897–900

    CAS  Google Scholar 

  • Shibuya N, Nimami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Estrella L, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sokołowska K, Zagórska-Marek B (2012) Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula × P. tremuloides (Salicaceae). Am J Bot 99:1745–1755

    PubMed  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5(10):e13324. doi:10.1371/journal.pone.0013324

    PubMed Central  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev (Immunol) 12:89–100

    CAS  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signaling: an emerging field. J Exp Bot 63(4):1525–1542

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    CAS  PubMed  Google Scholar 

  • Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    CAS  Google Scholar 

  • Stankovic B, Witters D, Zawadzki T, Davies E (1998) Action potentials and variation potentials in sunflower: an analysis of their relationships and distinguishing characteristics. Physiol Plant 103:51–58

    CAS  Google Scholar 

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13(2):66–71

    CAS  PubMed  Google Scholar 

  • Stern K (1924) Electrophysiologie der Pflanzen. Julius Springer, Berlin

    Google Scholar 

  • Suárez-López P (2005) Long-range signaling in plant reproductive development. Int J Dev Biol 49:761–771

    PubMed  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4(4):607–615

    CAS  PubMed  Google Scholar 

  • Sun J, Zhang C, Zhang X, Deng S, Zhao R, Shen X, Chen S (2012) Extracellular ATP signaling and homeostasis in plant cells. Plant Signal Behav 7(5):566–569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    CAS  PubMed  Google Scholar 

  • Swanson SJ, Choi W-G, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    CAS  PubMed  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Ottoline Leyser HM, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7(11):1057–1065

    CAS  PubMed  Google Scholar 

  • Tamaki V, Mercier H (2007) Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus). J Plant Physiol 164(11):1543–1547

    CAS  PubMed  Google Scholar 

  • Tanaka K, Gilroy S, Jones AM, Stacey G (2010) Extracellular ATP signaling in plants. Trends Cell Biol 20(10):601–608

    CAS  PubMed  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    PubMed  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14(5):519–529

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    CAS  PubMed  Google Scholar 

  • Thellier M, Desbiez MO, Champagnat P, Kergosien Y (1982) Do memory processes occur also in plants? Physiol Plant 56(3):281–284

    Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4(3):147–157

    CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Ann Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  • Tsien RY (2010) Nobel lecture: constructing and exploiting the fluorescent protein paint box. Integr Biol 2:77–93

    CAS  Google Scholar 

  • Tsutsui T, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane potential voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685

    CAS  PubMed  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536

    PubMed Central  PubMed  Google Scholar 

  • Ueda H, Kikuta Y, Matsuda K (2012) Plant communication: mediated by individual or blended VOCs? Plant Signal Behav 7(2):222–226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011) (Questions)(n) on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218

    PubMed  Google Scholar 

  • Vestergaard CL, Flyvbjerg H, Møller IM (2012) Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells? Front Plant Sci 3:295. doi:10.3389/fpls.2012.00295

    PubMed Central  PubMed  Google Scholar 

  • Vian A, Faure C, Girard S, Davies E, Hallé F, Bonnet P, Ledoigt G, Paladian F (2007) Plants respond to GSM-like radiation. Plant Signal Behav 2(6):522–524

    PubMed Central  PubMed  Google Scholar 

  • Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31(2):189–197

    CAS  PubMed  Google Scholar 

  • Wang G, Fiers M (2010) CLE peptide signaling during plant development. Protoplasma 240:33–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep. doi:10.1007/s00299-013-1421-6

    Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. doi:10.1093/aob/mct067

    PubMed Central  PubMed  Google Scholar 

  • Watahiki MK, Trewavas AJ, Parton RM (2004) Fluctuations in the pollen tube tip-focused calcium gradient are not reflected in nuclear calcium level: a comparative analysis using recombinant yellow cameleon calcium reporter. Sex Plant Reprod 17:125–130

    CAS  Google Scholar 

  • Weinl S, Held K, Schlucking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675–686

    CAS  PubMed  Google Scholar 

  • Williams SE, Pickard BG (1972a) Properties of action potentials in Drosera tentacles. Planta 103:193–221

    CAS  PubMed  Google Scholar 

  • Williams SE, Pickard BG (1972b) Receptor potentials and action potentials in Drosera tentacles. Planta 103:222–240

    CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signaling. Plant Cell Environ 25:195–210

    CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    CAS  PubMed  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–651

    CAS  PubMed  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signaling with biotic and abiotic stress responses. Plant Biol 10:50–62

    CAS  PubMed  Google Scholar 

  • Wu X, Weigel D, Wigge PA (2002) Signaling in plants by intercellular RNA and protein movement. Genes Dev 16:151–158

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 103(26):10104–10109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan X, Wang Z, Huang L, Wang C, Hou R, Xu Z, Qiao X (2009) Research progress on electrical signals in higher plants. Prog Nat Sci 19(5):531–545

    Google Scholar 

  • Yi HS, Heil M, Adame-Álvarez RM, Ballhorn DJ, Ryu CM (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Sun L, Kragler F (2009) The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150(1):378–387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Q, Guo HW (2011) Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant 4(4):626–634

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Vian Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Vian, A., Stankovic, B., Davies, E. (2015). Signalomics: Diversity and Methods of Analysis of Systemic Signals in Plants. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_16

Download citation

Publish with us

Policies and ethics