Skip to main content
  • Book
  • © 2017

Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems

  • Offers a comprehensive overview to help readers quickly master the key concepts of optimization-based control of large-scale and distributed nonlinear systems
  • Includes rigorous theoretical analysis that validates algorithms and control strategies for further theoretical study
  • Facilitates the work of engineers by providing provably correct design conditions for novel algorithms and control strategies
  • Provides easy-to-follow, simple and concise examples of the methods proposed to encourage practical implementation
  • Includes supplementary material: sn.pub/extras

Part of the book series: Studies in Systems, Decision and Control (SSDC, volume 83)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (8 chapters)

  1. Front Matter

    Pages i-xiii
  2. Introduction and Overview

    • Huiping Li, Yang Shi
    Pages 1-17
  3. Back Matter

    Pages 183-184

About this book

This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers.

The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book notonly proposes and analyzes novel control algorithms and/or strategies, but also rigorously develops provably correct design conditions. It also provides concise, illustrative examples to demonstrate the implementation procedure, making it invaluable both for academic researchers and engineering practitioners.





Reviews

“The monograph offers both practical solutions and rigorous theoretical analysis with correct design conditions. The book presents the solutions step-by-step graduating from the state feedback control problems of nonlinear networked systems to output control problems. … Readers are expected to be familiar with basic RHC as a necessary background. This book would be useful to advanced graduate students, academic researchers and applied mathematicians interested in this challenging area.” (Lubomír Bakule, zbMath 1415.93004, 2019)

Authors and Affiliations

  • School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

    Huiping Li

  • Department of Mechanical Engineering, University of Victoria, Victoria, Canada

    Yang Shi

About the authors

Yang Shi received the Ph.D. degree in electrical and computer engineering from the University of Alberta, Edmonton, AB, Canada, in 2005. From 2005 to 2009, he was an Assistant Professor with the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada. He is currently a Professor with the Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada. His current research interests include networked and distributed systems, system identification, model predictive control, mechatronics, and energy system applications.

Dr. Shi received the University of Saskatchewan Student Union Teaching Excellence Award in 2007, the Faculty of Engineering Teaching Excellence Award at the University of Victoria in 2012. He received the JSPS Invitation Fellowship (short-term) in 2013, the 2015 Craigdarroch Silver Medal for Excellence in Research of the University of Victoria, and   Thomson Reuters Highly Cited Researcher in Engineering in 2014 and 2015. He serves as Associate Editor for IEEE Trans. Control Systems Technology, IEEE/ASME Trans. Mechatronics, IEEE Trans. Fuzzy Systems, IET Control Theory and Applications, ASME Journal of Dynamic Systems, Measurement, and Control. He is currently a senior member of IEEE, a member of ASME, and a registered Professional Engineer in British Columbia, Canada.

Huiping Li received his B.Sc. and M.Sc. degrees in Mechanical Engineering and Automatic Control from Northwestern Polytechnical University, Xi’an, China, in 2006 and 2009, respectively, his Ph.D. degree in Mechanical Engineering from University of Victoria, BC, Canada, in 2013. From May to October 2013, he was a Postdoctoral Research Fellow with the Department of Mechanical Engineering, University of Victoria, BC. Since November 2013, he has been with the School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, where he is currently an Associate Professor. His research interests include networked control systems, multi-agent systems, model predictive control and cooperative control of underwater vehicles. He is an active reviewer for more than 10 international journals and conferences.

Bibliographic Information

  • Book Title: Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems

  • Authors: Huiping Li, Yang Shi

  • Series Title: Studies in Systems, Decision and Control

  • DOI: https://doi.org/10.1007/978-3-319-48290-3

  • Publisher: Springer Cham

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: Springer International Publishing AG 2017

  • Hardcover ISBN: 978-3-319-48289-7Published: 01 November 2016

  • Softcover ISBN: 978-3-319-83906-6Published: 29 June 2018

  • eBook ISBN: 978-3-319-48290-3Published: 22 October 2016

  • Series ISSN: 2198-4182

  • Series E-ISSN: 2198-4190

  • Edition Number: 1

  • Number of Pages: XIII, 184

  • Number of Illustrations: 6 b/w illustrations, 38 illustrations in colour

  • Topics: Control and Systems Theory, Computer Communication Networks, Communications Engineering, Networks

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access