Skip to main content

Advertisement

Log in

Understanding the structure–property relationships of the ferroelectric to relaxor transition of the (1 − x)BaTiO3–(x)BiInO3 lead-free piezoelectric system

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A structural and electromechanical investigation has been performed on (1 − x)BaTiO3–(x)BiInO3 in the region 0.03 ≤ x ≤ 0.12. A gradual structural phase transition has been observed where the structure changes from tetragonal (P4mm) and passes through two regions of coexisting phases: (1) P4mm + R3m in the range 0.03 ≤ x ≤ 0.075 and (2) \( Pm\bar{3}m \) + R3m for 0.10 ≤ x ≤ 0.12. The properties also transition from ferroelectric (x ≤ 0.03) to relaxor ferroelectric (x ≥ 0.05) as the dielectric permittivity maximum becomes temperature and frequency dependent. This transition was also confirmed via polarization-electric field measurements as well as strain-electric field measurements. At the critical composition of x = 0.065, a moderate strain of ~0.104% and an effective piezoelectric coefficient (d *33 ) of 260 pm/V were observed. The original purpose of this study was to demonstrate the polarization extension mechanism as predicted in the literature, but due to the ferroelectric to relaxor transition, this mechanism was not found to be present in this system. However, this demonstrates that BaTiO3-based lead-free ceramics could be modified to obtain enhanced electromechanical properties for actuator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Panda KP (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44(19):5049–5062. doi:10.1007/s10853-009-3643-0

    Article  Google Scholar 

  2. Roedel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177

    Article  Google Scholar 

  3. Damjanovic D, Klein N, Li J, Porokhonskyy V (2010) What can be expected from Lead-free piezoelectric materials? Funct Mater Lett 3(1):5–13

    Article  Google Scholar 

  4. Gensch CO, Baron Y, Blepp M, Moch K, Moritz S, Deubzer O (2016) Study to assess renewal requests for 29 RoHS 2 Annex III exemptions

  5. Fu HX, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403(6767):281–283

    Article  Google Scholar 

  6. Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1−xTixO3. Phys Rev Lett 84(23):5423–5426

    Article  Google Scholar 

  7. Bell AJ (2006) Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J Mater Sci 41(1):13–25. doi:10.1007/s10853-005-5913-9

    Article  Google Scholar 

  8. Damjanovic D (2009) Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Transact Ultrason Ferroelectr Freq Control 56(8):1574–1585

    Article  Google Scholar 

  9. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88(10):2663–2676

    Article  Google Scholar 

  10. Damjanovic D (2010) A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett 97(6):062906-3

    Article  Google Scholar 

  11. Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X (2012) Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. EPL 98(2):27008-6

    Article  Google Scholar 

  12. Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater 21(5):593–596

    Article  Google Scholar 

  13. Tasnadi F, Alling B, Hoglund C, Wingqvist G, Birch J, Hultman L, Abrikosov IA (2010) Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys. Phys Rev Lett 104(13):137601–137604

    Article  Google Scholar 

  14. Von AA, Bantle W (1944) Der inverse Piezoeffekt des seignetteelektrischen kristalls KH2PO4. Helv Phys Acta 17:298–318

    Google Scholar 

  15. Datta K, Suard E, Thomas PA (2010) Compositionally driven ferroelectric phase transition in xBiInO3-(1 − x)BaTiO3: a lead-free perovskite-based piezoelectric material. Appl Phys Lett 96(22):221902–221903

    Article  Google Scholar 

  16. Megaw HD (ed) (1957) Ferroelectricity in crystals. Methuen, London

  17. Jaffe H (1958) Piezoelectric ceramics. J Am Ceram Soc 41(11):494–498

    Article  Google Scholar 

  18. Belik AA, Stephanovich SY, Lazoryak BI, Takayama-Muromachi E (2006) BiInO3: a polar oxide with GdFeO3-type perovskite structure. Chem Mat 18(7):1964–1968

    Article  Google Scholar 

  19. Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park SE (2001) New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Jpn J Appl Phys 40(10):5999–6002

    Article  Google Scholar 

  20. Duan RR, Speyer RF, Alberta E, Shrout TR (2004) High curie temperature perovskite BiInO3-PbTiO3 ceramics. J Mater Res 19(7):2185–2193

    Article  Google Scholar 

  21. Li CL, Wang H, Wang B, Wang R (2007) First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3. Appl Phys Lett 91(7):071902–071903

    Article  Google Scholar 

  22. Li CL, Wang ZQ, Ma DC, Wang CY, Wang BL (2014) Phase stability, electronic structure and optical properties of BiInO3 under strain. Jpn J Appl Phys 47(5):055302–055307

    Google Scholar 

  23. Wang J, Tony BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79(8):085105–085107

    Article  Google Scholar 

  24. Coelho AA (2000) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Crystallogr 33(2):899–908

    Article  Google Scholar 

  25. Stephens PW (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr 32:281–289

    Article  Google Scholar 

  26. Bridges CA, Allix M, Suchomel MR, Kuang X, Sterianou I, Sinclair DC, Rosseinsky MJ (2007) A pure bismuth a site polar perovskite synthesized at ambient pressure. Angew Chem Int Ed 46:8785–8789

    Article  Google Scholar 

  27. Filip’ev VS, Smol’yaninov IP, Fesenko EG, Belyaev I (1960) Synthesis of BiFeO3 and determination of the unit cell. Kristallografiya 5:958

    Google Scholar 

  28. Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly Coupled Relaxor Behavior of BaTiO3–BiScO3. Ceram J Am Ceram Soc 92(1):110–118

    Article  Google Scholar 

  29. Raengthon N, Cann DP (2012) High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J Electroceram 28(2–3):165–171

    Article  Google Scholar 

  30. Huang C, Cann DP (2008) Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3–BaTiO3 perovskite solid solutions. J Appl Phys 104(2):024117-4

    Google Scholar 

  31. Bootchanont A, Triamnak N, Rujirawat S, Yimnirun R, Cann DP, Guo RY, Bhalla A (2014) Local structure and evolution of relaxor behavior in BaTiO3–Bi(Zn0.5Ti0.5)O3 ceramics. Ceram Int 40(9):14555–14562

    Article  Google Scholar 

  32. Zheng SY, Odendo E, Liu LJ, Shi DP, Huang YM, Fan LL, Chen J, Fang L, Elouadi B (2013) Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J Appl Phys 113(9):094102–094105

    Article  Google Scholar 

  33. Yu HC, Ren W, Ye ZG (2010) Structural, Dielectric, and Ferroelectric Properties of the (1 − x)PbTiO3-xBiAlO3 Solid Solution. IEEE Transact Ultrason Ferroelectr Freq Control 57(10):2177–2181

    Article  Google Scholar 

  34. Inaguma Y, Miyaguchi A, Yoshida M, Katsumata T, Shimojo Y, Wang RP, Sekiya T (2004) High-pressure synthesis and ferroelectric properties in perovskite-type BiScO3–PbTiO3 solid solution. J Appl Phys 95(1):231–235

    Article  Google Scholar 

  35. Eitel RE, Randall CA, Shrout TR, Park SE (2002) Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1 − x)BiScO3-xPbTiO3. Jpn J Appl Phys 41(4A):2099–2104

    Article  Google Scholar 

  36. Dinh TH, Kang JK, Lee JS, Khansur NH, Daniels J, Lee HY, Yao FZ, Wang K, Li JF, Han HS, Jo W (2016) Nanoscale ferroelectric/relaxor composites: origin of large strain in lead-free Bi-based incipient piezoelectric ceramics. J Eur Ceram Soc 36(14):3401–3407

    Article  Google Scholar 

  37. Bai WF, Chen DQ, Zheng P, Shen B, Zhai JW, Ji ZG (2016) Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. Dalton Trans 45(20):8573–8586

    Article  Google Scholar 

  38. Bai WF, Shen B, Zhai JW, Liu F, Li P, Liu BH, Zhang Y (2016) Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Mg, Ni, Co). Dalton Trans 45(36):14141–14153

    Article  Google Scholar 

  39. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Roedel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29(1):71–93

    Article  Google Scholar 

  40. Carl K, Hardtl KH (1978) Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics 17(3–4):473–486

    Google Scholar 

  41. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMR-1606909. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We would like to thank Saul Lapidus and Lynn Ribaud of 11-BM at the APS and Ashfia Huq, Pam Whitfield, and Melanie Kirkham of POWGEN at the SNS for their assistance with our mail-in samples. We would also like to thank David Cann at Oregon State University for use of his equipment for the permittivity measurements and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle R. Dolgos.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest regarding this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjón-Sanz, A., Berger, C. & Dolgos, M.R. Understanding the structure–property relationships of the ferroelectric to relaxor transition of the (1 − x)BaTiO3–(x)BiInO3 lead-free piezoelectric system. J Mater Sci 52, 5309–5323 (2017). https://doi.org/10.1007/s10853-017-0770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0770-x

Keywords

Navigation