Skip to main content
Log in

Oxygen release from BaLnMn2O6 (Ln: Pr, Nd, Y) under reducing conditions as studied by neutron diffraction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Selected A-site cation-ordered BaLnMn2O6 were investigated by neutron diffraction technique in terms of the structural modification ongoing with the oxygen release during annealing in reducing conditions. Kinetics of the structural transformations between oxidized BaLnMn2O6 (O6), partially reduced BaLnMn2O5.5 (O5.5) and fully reduced BaLnMn2O5 (O5) were measured in 200–500 °C range in 5 vol% H2 in Ar. Studies revealed that both O6–O5.5 and O5.5–O5 transitions for all samples occur according to a two-phase mechanism, but the phases undergo slight modification of their structural parameters. The Y-containing material showed decreased tendency of formation of oxygen vacancy-ordered BaYMn2O5.5. Moreover, kinetics of the transitions for Pr- and Nd-containing oxides was found to be more constrained by surface reaction and nucleation processes at the initial stage, while the following oxygen release from O5.5 phase was found to be limited rather by the oxygen diffusion, which is in opposite to BaYMn2O5+δ. The obtained results indicate that ionic radius of Ln3+ has a direct influence on the mechanism of the oxygen release process from BaLnMn2O6, influencing the oxygen storage-related performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Remsen S, Dabrowski B (2011) Synthesis and oxygen storage capacities of hexagonal Dy1−xYxMnO3+δ. Chem Mater 23:3818–3827

    Article  Google Scholar 

  2. Abughayada C, Dabrowski B, Kolesnik S, Brown DE, Chmaissem O (2015) Characterization of oxygen storage and structural properties of oxygen-loaded hexagonal RMnO3+δ (R = Ho, Er, and Y). Chem Mater 27(18):6259–6267

    Article  Google Scholar 

  3. Klimkowicz A, Świerczek K, Takasaki A, Molenda J, Dabrowski B (2015) Crystal structure and oxygen storage properties of BaLnMn2O5+δ (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides. Mater Res Bull 65:116–122

    Article  Google Scholar 

  4. Motohashi T, Ueda T, Masubuchi Y, Takiguchi M, Setoyama T, Oshima K, Kikkawa S (2010) Remarkable Oxygen intake/release capability of BaYMn2O5+δ: applications to oxygen storage technologies. Chem Mater 22:3192–3196

    Article  Google Scholar 

  5. Sengodan S, Choi S, Jun A, Shin TH, Ju Y-W, Jeong HY, Shin J, Irvine JTS, Kim G (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14(2):205–209

    Article  Google Scholar 

  6. Jeamjumnunja K, Gong W, Makarenko T, Jacobson AJ (2015) A determination of the oxygen non-stoichiometry of the oxygen storage material YBaMn2O5+δ. J Solid State Chem 230:397–403

    Article  Google Scholar 

  7. Świerczek K, Klimkowicz A, Zheng K, Dabrowski B (2013) Synthesis, crystal structure and electrical properties of A-site cation ordered BaErMn2O5 and BaErMn2O6. J Solid State Chem 203:68–73

    Article  Google Scholar 

  8. He H, Dai HX, Au CT (2004) Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal Today 90:245–254

    Article  Google Scholar 

  9. Klimkowicz A, Świerczek K, Takasaki A, Dabrowski B (2014) Oxygen storage capability in Co- and Fe-containing perovskite-type oxides. Solid State Ion 257:23–28

    Article  Google Scholar 

  10. Abughayada C, Dabrowski B, Remsen S, Kolesnik S, Chmaissem O (2014) Structural, magnetic, and oxygen storage properties of hexagonal Dy1−xYxMnO3+δ. J Solid State Chem 217:127–135

    Article  Google Scholar 

  11. Klimkowicz A, Świerczek K, Zheng K, Baranowska M, Takasaki A, Dabrowski B (2014) Evaluation of BaY1−xPrxMn2O5+δ oxides for oxygen storage technology. Solid State Ion 262:659–663

    Article  Google Scholar 

  12. Kadota S, Karppinen M, Motohashi T, Yamauchi H (2008) R-site substitution effect on the oxygen-storage capability of RBaCo4O7+δ. Chem Mater 20:6378–6381

    Article  Google Scholar 

  13. Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV (2013) Synthesis and oxygenation behavior of RBaCo4O7+δ (R = Y, Dy–Lu). Inorg Mater 49:626–631

    Article  Google Scholar 

  14. Lai KY, Manthiram A (2016) Phase stability, oxygen-storage capability, and electrocatalytic activity in solid oxide fuel cells of (Y, In, Ca)BaCo4−yGayO7+d. Chem Mater 28(24):9077–9087

    Article  Google Scholar 

  15. Karppinen M, Okamoto H, Fjellvåg H, Motohashi T, Yamauchi H (2004) Oxygen and cation ordered perovskite, Ba2Y2Mn4O11. J Solid State Chem 177:2122–2128

    Article  Google Scholar 

  16. Motohashi T, Ueda T, Masubuchi Y, Kikkawa S (2013) Oxygen intake/release mechanism of double-perovskite type BaYMn2O5+δ (0 ≤ δ ≤ 1). J Phys Chem C 117:12560–12566

    Article  Google Scholar 

  17. Motohashi T, Takahashi T, Kimura M, Masubuchi Y, Kikkawa S, Kubota Y, Kobayashi Y, Kageyama H, Takata M, Kitagawa S, Matsuda R (2015) Remarkable oxygen intake/release of BaYMn2O5+δ viewed from high-temperature crystal structure. J Phys Chem C 119:2356–2363

    Article  Google Scholar 

  18. Motohashi T, Takahashi T, Kimura M, Masubuchi Y, Kikkawa S, Kubota Y, Kobayashi Y, Kageyama H, Takata M, Kitagawa S, Matsuda R (2015) Remarkable oxygen intake/release of BaYMn2O5+δ viewed from high-temperature crystal structure. J Phys Chem C 119:2356–2363 (Supporting information)

    Article  Google Scholar 

  19. Jeamjumnunja K, Gong W, Makarenko T, Jacobson AJ (2015) A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5+δ (Ln = Gd, Pr). J Solid State Chem 239:36–45

    Article  Google Scholar 

  20. Castillo-Martínez E, Williams AJ, Attfield JP (2006) High-temperature neutron diffraction study of the cation ordered perovskites TbBaMn2O5+x and TbBaMn2O5(5−y). J Solid State Chem 179:3505–3510

    Article  Google Scholar 

  21. Williams AJ, Attfield JP, Redfern SAT (2005) High-temperature orbital, charge, and structural phase transitions in the cation-ordered manganites TbBaMn2O6 and YBaMn2O6. Phys Rev B 72:184426–1–184426–13

    Google Scholar 

  22. Pineda OL, Moreno ZL, Roussel P, Świerczek K, Gauthier GH (2016) Synthesis and preliminary study of the double perovskite NdBaMn2O5+δ as symmetric SOFC electrode material. Solid State Ionics 288:61–67

    Article  Google Scholar 

  23. Tonus F, Bahout M, Dorcet V, Gauthier GH, Paofai S, Smith RI, Skinner SJ (2016) Redox behavior of the SOFC electrode candidate NdBaMn2O5+d investigated by high-temperature in situ neutron diffraction: first characterisation in real time of an LnBaMn2O5.5 intermediate phase. J Mater Chem A 4:11635–11647

    Article  Google Scholar 

  24. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  25. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  26. Klimkowicz A, Świerczek K, Rząsa T, Takasaki A, Dabrowski B (2016) Oxygen storage properties and catalytic activity of layer-ordered perovskites BaY1−xGdxMn2O5+δ. Solid State Ionics 288:43–47

    Article  Google Scholar 

  27. Caignaert V, Millange F, Domengès B, Raveau B, Suard E (1999) A new ordered oxygen-deficient manganite perovskite: LaBaMn2O5.5 crystal and magnetic structure. Chem Mater 11:930–938

    Article  Google Scholar 

  28. Williams AJ, Attfield JP (2005) Ferro-orbital order in the charge- and cation-ordered manganite YBaMn2O6. Phys Rev B 72:024436–1–024436–5

    Google Scholar 

  29. Nakajima T, Kageyama H, Ueda Y (2002) Successive phase transitions in a metal-ordered manganite perovskite YBaMn2O6. J Phys Chem Sol 63:913–916

    Article  Google Scholar 

  30. Nakajima T, Kageyama H, Yoshizawa H, Ueda Y (2002) Structures and electromagnetic properties of new metal-ordered manganites: RBaMn2O6 (R = Y and Rare-Earth Elements). J Phys Soc Jpn 71(12):2843–2846

    Article  Google Scholar 

  31. Perca C, Pinsard-Gaudart L, Daoud-Aladine A, Fernández-Díaz MT, Rodríguez-Carvajal J (2005) Crystal and magnetic structures of the Mn3+ orbital ordered manganite YBaMn2O5.5. Chem Mater 17:1835–1843

    Article  Google Scholar 

  32. Motohashi T, Ueda T, Masubuchi Y, Kikkawa S (2013) Oxygen intake/release mechanism of double-perovskite Type BaYMn2O5+δ (0 ≤ δ ≤ 1). J Phys Chem C 117:12560–12566 (Supporting information)

    Article  Google Scholar 

  33. Hancock JD, Sharp JH (1972) Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite and BaCO3. J Am Ceram Soc 55:74–77

    Article  Google Scholar 

Download references

Acknowledgements

We thank HZB for the allocation of neutron radiation beamtime at the E9 instrument of BER II reactor. The authors would like to thank Dr. Andreas Hoser for his great help during measurements at E9 instrument. The project was funded by the National Science Centre Poland (NCN) on the basis of the decision number DEC-2011/01/B/ST8/04046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicja Klimkowicz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimkowicz, A., Świerczek, K., Zheng, K. et al. Oxygen release from BaLnMn2O6 (Ln: Pr, Nd, Y) under reducing conditions as studied by neutron diffraction. J Mater Sci 52, 6476–6485 (2017). https://doi.org/10.1007/s10853-017-0883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0883-2

Keywords

Navigation