Skip to main content
Log in

Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4 % CdS or ZnS

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

PbTe-based thermoelectric (TE) materials have been extensively investigated as TE generator materials, however, the tellurium content limits the application potential due to both availability and cost. Replacing the tellurium with selenium or sulfur produces an isomorphic TE material with very good reported figure of merit, ZT, values of 1.3–1.6, but the effect of the material changes designed to increase ZT (doping, nano- and micro-precipitate additions) on mechanical properties has not been reported. In order to effectively incorporate these new materials into TE devices, it is important to understand materials’ response to thermally and mechanically imposed loads, which in turn requires knowledge of the mechanical properties. In this study, the hardness was determined by Vickers indentation and elastic modulus and Poisson’s ratio were measured using resonant ultrasound spectroscopy on PbSe- and PbS-based TE specimens as a function the addition of 0–4 at.% of CdS or ZnS. With 2.0 or 2.5 at.% Na doping, the hardness of PbSe- or PbS-based TE materials increased by about 30 % and the elastic moduli decreased by 5–10 %. In addition, PbS may be effectively sintered at 723 K when doped with 2.5 at.% Na, but requires a higher sintering temperature when undoped. This study shows that the hardness and moduli of PbSe- or PbS-based TE materials are not strong functions of the addition of CdS or ZnS precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao L-D, Hao S, Lo S-H et al (2013) High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J Am Chem Soc 135:7364–7370. doi:10.1021/ja403134b

    Article  Google Scholar 

  2. Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418. doi:10.1038/nature11439

    Article  Google Scholar 

  3. Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321:554–557. doi:10.1126/science.1159725

    Article  Google Scholar 

  4. Haxel GB, Hedrick JB, Orris GJ (2002) Rare earth elements—critical resources for high technology. USGS Fact Sheet fs087-02. http://pubs.usgs.gov/fs/2002/fs087-02. Accessed 25 Apr 2014

  5. Johnsen S, He J, Androulakis J et al (2011) Nanostructures boost the thermoelectric performance of PbS. J Am Chem Soc 133:3460–3470. doi:10.1021/ja109138p

    Article  Google Scholar 

  6. Zhao L-D, He J, Hao S et al (2012) Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc 134:16327–16336. doi:10.1021/ja306527n

    Article  Google Scholar 

  7. Zhao L-D, He J, Wu C-I et al (2012) Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. J Am Chem Soc 134:7902–7912. doi:10.1021/ja301772w

    Article  Google Scholar 

  8. Ren F, Case ED, Timm EJ, Schock HJ (2007) Young’s modulus as a function of composition for an n-type lead–antimony–silver–telluride (LAST) thermoelectric material. Philos Mag 87:4907–4934. doi:10.1080/14786430701589376

    Article  Google Scholar 

  9. Ren F, Hall BD, Ni JE et al (2011) Mechanical characterization of PbTe-based thermoelectric materials. MRS Proc 1044:1044–1048. doi:10.1557/PROC-1044-U04-04

    Google Scholar 

  10. Kaliakin VN (2002) Introduction to approximate solution techniques, numerical modeling, and finite element methods. Marcel Dekker, New York

    Google Scholar 

  11. Kingery WD, Bowen HK, Uhlman DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  12. Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York

    Google Scholar 

  13. Ren F, Case ED, Timm EJ, Schock HJ (2008) Hardness as a function of composition for n-type LAST thermoelectric material. J Alloys Compd 455:340–345. doi:10.1016/j.jallcom.2007.01.086

    Article  Google Scholar 

  14. Hamid Elsheikh M, Shnawah DA, Sabri MFM et al (2014) A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sustain Energy Rev 30:337–355. doi:10.1016/j.rser.2013.10.027

    Article  Google Scholar 

  15. Dalven R (1969) A review of the semiconductor properties of PbTe, PbSe, PbS and PbO. Infrared Phys 9:141–184. doi:10.1016/0020-0891(69)90022-0

    Article  Google Scholar 

  16. Bhagavantam S, Rao TS (1951) Elastic constants of Galena. Nature 168:42. doi:10.1038/168042b0

    Article  Google Scholar 

  17. Lippmann G, Kästner P, Wanninger W (1971) Elastic constants of PbSe. Phys Status Solidi 6:K159–K161. doi:10.1002/pssa.2210060264

    Article  Google Scholar 

  18. Hellwege K (1979) Landold–Bornstein numerical data and functional relationships in science and technology, new series, vol 11. Springer, Berlin

    Google Scholar 

  19. Zhao L-D, Zhang B-P, Li J-F et al (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 455:259–264. doi:10.1016/j.jallcom.2007.01.015

    Article  Google Scholar 

  20. Kvetková L, Duszová A, Kašiarová M et al (2013) Influence of processing on fracture toughness of Si3N4+ graphene platelet composites. J Eur Ceram Soc 33:2299–2304. doi:10.1016/j.jeurceramsoc.2013.01.025

    Article  Google Scholar 

  21. Ni JE, Case ED, Khabir KN et al (2010) Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe–PbS thermoelectric materials. Mater Sci Eng B 170:58–66. doi:10.1016/j.mseb.2010.02.026

    Article  Google Scholar 

  22. Gelbstein Y, Gotesman G, Lishzinker Y et al (2008) Mechanical properties of PbTe-based thermoelectric semiconductors. Scripta Mater 58:251–254. doi:10.1016/j.scriptamat.2007.10.012

    Article  Google Scholar 

  23. Darrow MS, White WB, Roy R (1969) Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe. J Mater Sci 4:313–319. doi:10.1007/BF00550400

    Article  Google Scholar 

  24. Ren F, Case ED, Ni JE et al (2009) Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos Mag 89:143–167. doi:10.1080/14786430802607119

    Article  Google Scholar 

  25. Schmidt RD, Ni JE, Case ED et al (2010) Room temperature Young’s modulus, shear modulus, and Poisson’s ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials. J Alloys Compd 504:303–309. doi:10.1016/j.jallcom.2010.06.003

    Article  Google Scholar 

  26. Migliori A, Sarrao JL (1997) Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation. Wiley-VCH, New York

    Google Scholar 

  27. Schmidt RD, Case ED, Lehr GJ, Morelli DT (2013) Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material. Intermetallics 35:15–24. doi:10.1016/j.intermet.2012.11.019

    Article  Google Scholar 

  28. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, 2nd edn. Wiley-VCH, Hoboken

    Book  Google Scholar 

  29. Noda Y, Masumoto K, Ohba S et al (1987) Temperature dependence of atomic thermal parameters of lead chaleogenides, PbS, PbSe and PbTe. Acta Crystallogr C43:1443–1445

    Google Scholar 

  30. Schmidt RD, Case ED, Lobo Z et al (2014) Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites. J Mater Sci 49:7192–7212. doi:10.1007/s10853-014-8427-5

    Article  Google Scholar 

  31. Sangster J, Pelton AD (1997) The Na–S (sodium–sulfur) system. J Phase Equilib 18:89–96. doi:10.1007/BF02646762

    Article  Google Scholar 

  32. Ni JE, Ren F, Case ED, Timm EJ (2009) Porosity dependence of elastic moduli in LAST (lead–antimony–silver–tellurium) thermoelectric materials. Mater Chem Phys 118:459–466. doi:10.1016/j.matchemphys.2009.08.018

    Article  Google Scholar 

  33. Ni JE, Case ED, Stewart R et al (2011) Bloating in (Pb0.95Sn0.05Te)0.92(PbS)0.08–0.055%PbI2 thermoelectric specimens as a result of processing conditions. J Electron Mater 41:1153–1158. doi:10.1007/s11664-011-1853-0

    Article  Google Scholar 

  34. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook, 2nd edn. The MIT Press, Cambridge

    Google Scholar 

  35. Schmidt RD, Case ED, Ni JE et al (2013) High-temperature elastic moduli of thermoelectric SnTexy SiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.1007/s10853-013-7637-6

    Article  Google Scholar 

  36. Shin C-S, Gall D, Hellgren N et al (2003) Vacancy hardening in single-crystal TiN x (001) layers. J Appl Phys 93:6025–6028. doi:10.1063/1.1568521

    Article  Google Scholar 

  37. Portnoi KI, Mukaseev AA, Gribkov VN, Levinskii YV (1968) Modulus of normal elasticity of porosity-free titanium and zirconium nitrides. Sov Powder Metall Met Ceram 7:406–408. doi:10.1007/BF00774537

    Article  Google Scholar 

  38. Jiang X, Wang M, Schmidt K et al (1991) Elastic constants and hardness of ion-beam-sputtered TiN x films measured by Brillouin scattering and depth-sensing indentation. J Appl Phys 69:3053–3057. doi:10.1063/1.348963

    Article  Google Scholar 

  39. Wang Y, Duncan K, Wachsman E, Ebrahimi F (2007) The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ion 178:53–58. doi:10.1016/j.ssi.2006.11.003

    Article  Google Scholar 

  40. Bloem J, Kröger FA (1955) A relation between hardness and stoichiometry in lead sulphide single crystals. Nature 175:861. doi:10.1038/175861a0

    Article  Google Scholar 

  41. Rice RW, Wu CC, Borchelt F (1994) Hardness-grain-size relations in ceramics. J Am Ceram Soc 77:2539–2553. doi:10.1111/j.1151-2916.1994.tb04641.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Energy, Revolutionary Materials for Solid State Energy Conversion Center, an Energy Frontiers Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, R.D., Case, E.D., Zhao, LD. et al. Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4 % CdS or ZnS. J Mater Sci 50, 1770–1782 (2015). https://doi.org/10.1007/s10853-014-8740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8740-z

Keywords

Navigation